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Abstract—Mission-critical services often deploy multiple
Machine Learning (ML) models in a distributed graph manner,
where each model can be deployed on a distinct physical host.
Practical fault tolerance for such ML service graphs should
meet three crucial requirements: high availability (fast failover),
low normal case performance overhead, and global consistency
under non-determinism (e.g., threads in a GPU can do floating
point additions in a random order). Unfortunately, despite much
effort, existing fault tolerance systems, including those taking the
primary-backup approach or the checkpoint-replay approach,
cannot meet all these three requirements.

To tackle this problem, we present HAMS, which starts
from the primary-backup approach to replicate each stateful
ML model, and we leverage the causal logging technique
from the checkpoint-replay approach to eliminate the notorious
stop-and-buffer delay in the primary-backup approach. Extensive
evaluation on 25 ML models and six ML services shows that: (1)
in normal case, HAMS achieved 0.5%-3.7% overhead on latency
compared with bare metal; (2) HAMS took 116.12ms-254.19ms
to recover one stateful model in all services, 155.1X-1067.9X
faster than a relevant system Lineage Stash (LS); and (3) HAMS
recovered these services with global consistency even when the
GPU non-determinism exists, not supported by LS. HAMS’s code
is released on github.com/hku-systems/hams.

I. INTRODUCTION

Recent machine learning (ML) models are pervasively
deployed in mission-critical services (e.g., autopilot [47]
and online stock prediction [74]). An ML service works as
a dataflow application with a directed service graph [10],
[34]. Each vertex in the graph represents an operator (i.e.,
an ML model) deployed on a distinct host to harness
heterogeneous hardware resources; each edge represents
an ordered connection from an upstream operator to a
downstream operator, and the upstream operator propagates
its outputs as a sequence of input requests to the downstream.
A client program sends a request to the service graph and
receives the final output from the graph as a reply.

An ML operator can be stateless or stateful. A stateless
operator (e.g., inference with a VGG19 model [73]) processes
each request independently and does not keep any states; a
stateful operator (e.g., an online learned VGG19 model [71]
or a Recurrent Neural Network model [20]) holds an internal
state computed from previous requests that will affect the
processing of future requests. For instance, Figure 1 shows
the service graph for an online learned VGG19 model that
has two input sequences of training and prediction requests
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with non-deterministic interleaving. The VGG19 model is
stateful because previous training requests updates its model
parameters that will affect future inference results.

Given that failures can happen at any time on any host,
fault tolerance is crucial for mission-critical ML service
graphs. A practical fault tolerant system for an ML model
service graph should meet three essential requirements.
First, the system must provide high availability with at
most sub-second recovery time to provide continuous and
unaffected services (e.g., an autopilot service should act with at
most sub-second delay [47], [60]). Second, the system should
incur low performance overhead in the normal case (no failure)
compared with a bare metal (not fault tolerant) system.

Third, when a stateful operator O’s state is recovered after
a failure, the system must recover O’s state with global
consistency [70], [72], [84], [86]: as O’s state affects its
prediction output, if some of O’s outputs are already processed
by downstream stateful operators (or clients), O should not be
recovered to a state that generates conflicting outputs (e.g., an
output with same sequence number but a different value). For
instance, if an online learned VGG19 model (Figure 1) tells
its downstream operators and clients that the 34th image is a
truck, after a failover, its recovered state should not classify
this image to a different result.

Non-determinism is the major open challenge for ensuring
global consistency, as it has two sources in an ML service
graph. First (S1), an operator can receive non-deterministically
interleaved input sequences from multiple upstream operators.
Second (S2), GPU models’ processing of a request is
inherently non-deterministic: the GPU scheduler can process
floating point additions of multiple GPU threads in a
non-deterministic order, and floating point additions are
non-associative and rounded [55].

Due to S2, after an operator recovers from a failure, even
given the same input sequence as before the failure (i.e., S1
is eliminated), the recovered operator can easily run into a
different (inconsistent) state, easily leading to disasters for
mission-critical services. We did an experiment to reveal
the consequence of S2 during a failover triggered by us in
Figure 2: an online learned VGG19 image classification model
generates conflicting outputs on processing the 34th inference
request, permanently corrupted the service logic. We inspected
the classification confidence tuple in the model’s output, and
this tuple changed from (truck:0.5953, cloud:0.5884)

before the failure to (truck:0.5921, cloud:0.5943) after
the failover. A practical fault tolerant system that meets the
third requirement should recover the model to a state that
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Fig. 1: An image classification service
with an online learned VGG19 model.
Grey models are stateless, and the blue
model (i.e., the online learned VGG19)
is stateful.

Fig. 2: Inconsistency caused by a failover using the checkpoint-replay approach for
an online-learned VGG19 model. Its state is represented as Vx.y: Vx.0 means the
state of the xth checkpoint, and Vx.y means its state after processing y training
requests since the xth checkpoint. Inference requests do not change VGG19’s state.

generates a consistent classification decision with the former
tuple’s, as this tuple has been passed to downstream operators
or clients. We will illustrate GPU non-determinism in §II-C.

A recent system Lineage Stash [84] (LS) checkpoints
the state of a stateful model periodically and uses causal
logging [4] to efficiently record the interleaving of input
sequences (S1). When failures occur, LS replays the
interleaving from the latest checkpoint state. However,
LS faces a paradox between the recovery time (the first
requirement) and the normal case performance overhead (the
second requirement) depending on its checkpoint interval. By
default, LS sets its checkpoint interval to a few minutes,
introducing a long recovery time of several minutes [84].
If LS reduces its checkpoint interval to sub-second for
faster recovery, it incurs prohibitive latency slowdown (81%
in our evaluation) because all stateful operators must be
frequently stopped, checkpointed, and resumed. Moreover,
LS, as well as other checkpoint-replay based fault tolerant
systems [1], [6], [21], [50]–[52], assume S2 does not occur,
but non-determinism is inherent in GPU computing (§II-C).
In short, the checkpoint-replay approach can meet either the
first or the second requirement, but not the third one.

The primary-backup replication approach (e.g., Remus [13])
can meet the first and the third requirement (i.e., handling both
S1 and S2). It lets a primary execute a batch of requests, and
propagate its updated state to a standby backup, so that the
backup can take over immediately if the primary fails, meeting
the first requirement. To meet the third requirement (global
consistency), the primary buffers its outputs until the updated
state is delivered to the backup. However, the primary-backup
approach does not meet the second requirement due to two
reasons. First, a primary of a stateful operator needs to be
stopped to copy its updated state after processing every batch
of requests. Second, the primary needs to buffer its outputs,
which are demanded by its downstream operators, until the
updated state is delivered to its backup. When multiple stateful
operators are deployed in a service graph, each client request
will be stop-and-buffered multiple times in the graph. We will
illustrate the primary-backup approach in §III-B.

We present HAMS (Highly Available Machine-learning

Services), the first ML service system that meets all the three
crucial requirements. HAMS presents an ML-context-aware
Non-Stop Primary-Backup protocol (NSPB) to eliminate the
stop-and-buffer delay for an ML service graph. Our key
observation is that the computation of a typical stateful ML
operator can be divided into two phases: computation phase
and update phase (§II-B). A stateful operator reads only its
internal state in the computation phase and updates the state
in the update phase. HAMS provides simple API for the ML
model developers to explicitly identify the two phases, so that
HAMS can asynchronously retrieve a model’s updated state
during the computation phase without stopping the operator.

Moreover, NSPB enables the primary to release its outputs
to downstream operators without waiting the state to be
delivered to the backup. Our idea is to let downstream
operators speculatively execute these outputs, in parallel with
the primary’s delivery of its state to its backup. NSPB just
maintains the causal dependency of per-batch state across the
upstream and downstream operators. If any host (primary or
backup) of any stateful operator fails, HAMS can maintain the
leftover hosts’ global consistency.

We implemented HAMS with about 11K LoC on
Clipper [11] and Tensorflow Serving [58]. We evaluated
HAMS with 25 mature ML models on PyTorch [65] and
used these operators to build six practical ML services. We
compared HAMS with a bare metal system, a HAMS-Remus
system that follows Remus’s primary-backup protocol, and an
implementation of the most relevant replay-based approach
LS [84], as LS is not open-source. Evaluation shows that:

• HAMS was efficient. HAMS’s end-to-end latency achieved
0.5% to 3.7% overhead compared with the bare metal
system, and this overhead is comparable to LS’s.

• HAMS took 116.12ms-254.19ms to recover one stateful
model in all services, 155.1X-1067.9X faster than LS.

• HAMS correctly recovered failed stateful ML operators
in a service graph, in the presence of S1 and S2.

The major contribution of this paper is HAMS, the first
efficient and high available ML service graph system and
the NSPB protocol. NSPB is a novel integration of the
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primary-backup approach with the causal logging technique
from the checkpoint-replay approach. HAMS’s NPSB protocol
can be integrated into diverse ML serving systems (e.g.,
Clipper [11], Tensorflow Serving [58], and Ray [50]) and
improve their reliability.

In the remaining of this paper, §II introduces background.
§III gives an overview of HAMS. §IV presents NSPB. §V
describes HAMS’s implementation. §VI shows our evaluation.
§VII discusses related work and §VIII concludes.

II. BACKGROUND AND MOTIVATION

A. Machine Learning

Among all ML algorithms, we mainly focus on deep neural
network algorithms [8], [26], [68], [73] in this paper as they
are most widely deployed. The life-cycle of an ML model
can be divided into two phases: a training phase and an
inference phase. The training phase passes an input dataset
multiple times (a.k.a., epochs), where each epoch works
with four steps: (1) a portion (batch) of the input dataset
forward-propagates through the model in parallel (forward
propagation stage); (2) the model computes a loss for each
input data (loss computation); (3) losses of the batch of inputs
backward-propagate through the model in parallel with each
leading to a gradient (backward propagation stage); and (4)
the model is updated according to the sum of all gradients. In
the inference phase, new (batched) inputs forward-propagate
through the model to generate prediction results.

An ML model (or operator, interchangeable in this paper)
can involve only the inference phase (model serving) or
both the training and the inference phases (online learning).
For model serving, a pre-trained model is deployed to give
predictions on input requests. For online learning, the model
is continuously re-trained with real-world data to fine-tune the
model and to meet real-world trends, and serves inference
requests at the same time. HAMS supports both deployment
scenarios. As an ML model typically focuses on doing a single
job (e.g., audio transcribing or face recognition), and different
models are developed by different people, an ML service needs
to compose multiple models in a service graph [10], [34].

B. ML Services Can Be Stateful

Stateful ML services have two major categories: stateful
inference and stateful online learning. In stateful inference, an
operator typically contains a Recurrent Neural Network (e.g.,
LSTM [20]) to capture dependencies in the input sequence
(e.g., speech translation) as the model’s state that will affect
future predictions. In stateful online learning, the model’s
parameters are continuously updated and constitute its state.

For both categories, processing a (batch of) request can
be divided into two stages: computation and update. For
stateful inference, we take LSTM with a forget gate [20] as
an example. When a new input request arrives, an LSTM cell
first computes the forget gate’s activation tensor, the update
gate’s activation tensor, and the output gate’s activation tensor.
All these three computations read only the hidden state tensor
(computation stage). After that, the cell state tensor is updated

according to previous computation results, the hidden state
tensor is updated according to both the computation results
and the updated cell state tensor (update stage). For stateful
online learning, only training requests update the model’s state
(i.e., model parameters). In the four steps of the training phase
(§II-A), the model’s parameters are read-only in the first three
steps and are only updated in the last step.

C. ML Can Be Non-deterministic

ML mainly does parallel computation (e.g., convolution)
on matrices of floating points. Floating point additions are
inherently not associative on GPU. Specifically, a + b + c is
usually not equal to a+(b+c) because floating point numbers
are rounded [55], which will accumulate in stateful models.
This makes ML computation non-deterministic: the scheduler
in a general GPU usually non-deterministically schedules the
parallel additions (e.g., AtomicAdd() in CuDNN) of floating
point tensors and produces different results, even given the
same inputs, same hyperparameters, and same random seeds.

For instance, three back propagation algorithms (e.g.,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 [54]) in CuDNN
are causing non-determinism due to the non associative
property of floating point additions and non-deterministic
parallel scheduling of GPU [55]. These three algorithms
are frequently used by convolution operations in many
ML frameworks (e.g., PyTorch [61], Tensorflow [1], and
Caffe2 [29]), and causes both training and inference of a
convolutional layer non-deterministic. Figure 2 illustrates a
non-deterministic problem during online-learning caused by
these three algorithms. In the backward propagation phase of a
CNN model, the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0
algorithm is used. These algorithms can also make ML
inference (with only forward propagation) non-deterministic.
For instance, in the forward propagation of a transposed
convolution layer (used for upsampling, a.k.a, deconvolution
layer), the three algorithms are also invoked (as shown in the
source code of Pytorch [66], Tensorflow [76], and Caffe2 [5])
and hence the computation can be non-deterministic.
Moreover, some ML runtime features (e.g., autotune [7], [81]
and runtime fusion [27]) can easily cause non-determinism.

An ongoing project [56] from Nvidia tries to eliminate
some of these non-determinism sources by providing
a more deterministic but slower CuDNN backend.
However, some operations have non-determinism sources
inherently, which are difficult to eliminate. For example,
in PyTorch [61], even enabling the deterministic option
(torch.backends.cudnn.deterministic), a set of
operations (e.g., ctc_loss() and embedding_bag()) using
parallel AtomicAdd() are still non-deterministic [67].

These non-determinism sources make an operator replayed
from a checkpoint easily run into an inconsistent (divergent)
state once the operator fails, even given the same input
sequence as before the failure (Figure 2). We further
conducted a quantitative study (Figure 3) to show how often a
divergence may happen during a checkpoint-replay failover.
The experiment used a Kaggle [33] dataset and a mature
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Fig. 3: Divergence occurrences of evaluating a model replayed
from a checkpoint on a test set of 182 images (vehicle license
number plates) by 10 times. X-axis is the checkpoint interval.
Y-axis is the divergence occurrences.

Mask-RCNN [25] model built with ctc_loss() and enabled
the PyTorch deterministic option. This model often exists in
mission-critical autopilot systems for license plate recognition.
In Figure 3, we counted the occurrences of classification errors
whenever the recovered model gave an inconsistent (different)
classification result on any of the tested image compared with
that of the original model; we also counted the occurrences
of 8-bit errors whenever the recovered model output an
inconsistent rounded 8-bit precision loss on the whole test
set compared with the original model. The results show that
a longer checkpoint interval (§I) in the checkpoint-replay
approach causes more occurrences of inconsistency during
failover. Checkpoint-replay systems like LS [84] typically
take a long checkpoint interval (e.g., one checkpoint per 100
requests) for efficiency, which makes divergence occur more
often.

III. OVERVIEW

A. System Model and Architecture

Figure 4 shows HAMS’s architecture. To deploy an ML
service graph, a developer provides a definition of the graph
and a set of pre-trained models. HAMS deploys these models
on a cluster of physical hosts with each model co-located
with a HAMS proxy. A HAMS proxy encapsulates the logic
for request propagation, state replication, and failover, while
a model only takes a batch of inputs and produces outputs.
A developer should specify whether each model is stateful or
stateless in the DAG. HAMS replicates each stateful model
with a primary and a backup for fast failover. HAMS do not
replicate stateless models as they do not hold internal state.
HAMS also provides a group of frontend servers replicated
with SMR [59] to handle client requests: on receiving a client
request, a frontend logs the request, sends it to the service
graph, and returns the result processed by the service graph
back to the client. HAMS has a global manager replicated with
SMR [59] for each deployment domain (e.g., a datacenter) to
store deployment information and to handle failover.

HAMS supports general ML services represented as
Directed Acyclic Graphs (DAG). Cyclic graphs with
back-edges (e.g., reinforcement learning [31]) can be easily
converted to DAGs in HAMS by letting their back-edges point
to the frontend. In a DAG, if a model has multiple input
sequences, the service developer can determine whether to let
the model combine requests from these sequences or process
them in an arbitrarily interleaving manner; if a model has
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Fig. 4: HAMS architecture with components in green. A cluster
can be a datacenter or a car with computers (e.g., autopilot).

multiple output streams, each output of the model can be sent
to a specific subset or the entire set of downstream operators.

As shown in Figure 4, a HAMS proxy for the primary of a
stateful model has two main modules. The Request Manager
buffers received input requests from upstream models, logs
metadata for these requests (§IV-D), and synchronously passes
a batch of requests to the model for processing. When the
model finishes processing a batch of requests, the State
Manager retrieves the model’s internal state into a state buffer
and sends the state to its backup.

A HAMS proxy for a stateless model activates only its
request manager module; a HAMS proxy for the backup of a
stateful model activates only its state manager module. When
a backup’s proxy receives a state from its primary, it first saves
the state in the state buffer, and determines when to apply the
state to the model based on HAMS’s NSPB protocol (§IV-C).

Failure model. HAMS’s failure model is the same as typical
fault-tolerant systems for dataflow applications [84], [86]: a
host can fail, network packets can be dropped or reordered,
and network can be partitioned. As a primary-backup system,
HAMS assumes that the primary and backup of the same model
do not fail simultaneously: HAMS handles one host failure
for each stateful operator or each stateless operator (§IV-E).
HAMS also uses efficient state machine replication [59] to
replicate the frontend as it is deterministic.

B. Context-aware Non-stop Primary-backup

Primary-backup is a powerful approach to provide fault
tolerance for applications with internal non-determinism. For
instance, Remus is a notable fault-tolerance system for generic
applications running with a virtual machine (VM) as a black
box. The upper half of Figure 5 shows the workflow of Remus.
Remus first lets the primary execute a batch of requests (say
the nth batch) and buffers its outputs, and then replicates
the primary’s state with three steps. First, Remus stops the
primary and copies its updated states to a memory buffer.
Second, Remus lets the primary execute the (n+ 1)

th batch of
requests and sends the copied state to the backup. Third, once
the backup successfully receives the state update, the primary
releases its output for the nth batch to downstream models.
This output buffering is essential to ensure global consistency.
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Fig. 5: Comparison of Remus and NSPB: NSPB releases
outputs to downstream models much faster than Remus.

However, this traditional primary-backup approach is
significantly inefficient for replicating stateful models in a
service graph: the processing for the nth batch finishes at
the time of the red dotted line, but the output is buffed until
the third step finishes. In a service graph, the delay caused
by buffering will occur multiple times when a client request
goes through multiple stateful models in the graph, causing
prohibitive slowdown for mission-critical services.

The bottom half of Figure 5 shows the workflow of
HAMS’s NSPB protocol with three steps. First, the primary
releases the output to downstream operators immediately after
processing the nth batch of requests. Second, the primary
sends its state made by the nth batch to its backup in
parallel with the computation stage of the (n+ 1)

th batch
of requests. Third, the primary enters its update stage for
the (n+ 1)

th batch after the state made by the nth batch is
delivered to the backup. NSPB eliminates the stop-and-buffer
delay in a traditional primary-backup system and incurs little
performance overhead. We carry a proof of NSPB’s global
consistency in a service graph in §IV-F.

IV. HAMS’S RUNTIME PROTOCOL

A. Preliminaries

As a service’s models work in a DAG, we can topologically
sort the models and use Mp to denote the pth model. We say
that Mp is a predecessor of Mq if there is an edge (Mp → Mq)
in the graph, and Mq is a successor of Mp. We say Mx is
Mp’s downstream model if Mp can reach Mx in the graph, but
Mx is Mp’s successor only if they are adjacent in the graph.

We use rip to denote the ith request that the Mp model
executes, sip to denote the resultant state (sip = ∅ if Mp is
stateless), and oip to denote the corresponding output. We say
a state sip is durable [84] if Mp’s backup has applied the
state. To ease discussion, we further define a stateful model
Mp’s next stateful models as the nearest downstream stateful
models for Mp. Formally, a stateful model My is an Mp’s next
stateful model if: there exists one path that Mp can reach My

and there is no other stateful model in the path between Mp

and My . Symmetrically, we define previous stateful models as
the nearest upstream stateful models.

B. Retrieves A Model’s State without Stopping It

Existing primary-backup approaches need to stop the
primary to retrieve its internal state. For instance, Remus
leverages VM-specific techniques (e.g., shadow page tables)
to record updated memory pages (a.k.a, dirty pages) on the
primary VM and periodically stops the primary VM for
retrieving the dirty pages to send to the backup.

However, this black-box approach is not suitable for
replicating stateful ML models in a service graph as recent ML
models typically run on GPUs. The bandwidth between GPU
memory and CPU memory is around one order of magnitude
smaller than the bandwidth between CPU and its memory [62].
If Remus’s black-box approach is used, the stop time will be
much longer for retrieving dirty GPU memory. Moreover, it is
still an open challenge [14], [16] to efficiently identify dirty
GPU pages, so Remus has to copy all GPU memory out first.

Unlike Remus, NSPB introduces a white-box mechanism
based on the compute-then-update nature of ML models
(§II-B) to retrieve a stateful model’s internal state without
stopping it. As illustrated in Figure 5, during the computation
stage for the n+ 1th batch, the primary model’s model state
(i.e., parameters) stays intact, same as after processing the
nth batch. Thus, the primary’s proxy can retrieve the model’s
internal states in parallel with the computation stage of the
n+ 1th batch, without the need to stop it.

Occasionally, state retrieval may take longer time than
the computation stage. To prevent the proxy from getting
corrupted state, HAMS lets the primary model wait for a signal
from the proxy (§V) before entering the update stage, the
proxy sends the signal after finishing its state retrieval.

C. Release Outputs without Waiting for State Propagation

For clear exposition of idea, in this subsection, we use
a deliberately simplified setting with models working in a
service chain (no branches) and batch sizes all being one.

To ensure global consistency, existing primary-backup
approaches let a primary buffer a request’s output until the
state modified by this request is delivered to its backup (i.e.,
durable). Previous works [15], [46], [83] show that output
buffering is a major source of overhead to primary-backup
systems, and the overhead will increase with the replicated
application’s memory footprint.

NSPB enables a stateful model’s primary to release outputs
without waiting for its states to be durable. However, NSPB
must maintain global consistency. A strawman approach is to
buffer each reply to its client only before the reply leaves the
service graph, until all states affected by this reply are durable.
This approach works for deterministic services [36], but will
cause inconsistency in the presence of non-determinism.

Figure 6 shows an example of the inconsistency caused
by the strawman approach: model A (Ma) and model B
(Mb) are two stateful models, and models between A and
B are stateless. The inconsistency can be triggered with five
steps. First, Ma’s primary processes request rna , generates
its output ona and state sna . Second, Ma releases its output
to downstream models and asynchronously sends sna to its
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Fig. 6: Inconsistency caused by the strawman approach.

backup. Due to network anomaly, the delivery of sna is delayed.
Third, ona is processed by stateless models between Ma and
Mb and is transformed as rnb that is processed by Mb. Forth,
Mb finishes processing rnb and successfully delivers the state
snb to its backup. Fifth, Ma’s primary fails and its backup
takes over as a new primary. As Ma’s new primary still
holds state sn−1a , the new primary needs to re-execute rna
(for now, assume HAMS already replicates input requests).
However, as the re-computation is non-deterministic, Ma’s
backup may enter a different state sn

′

a and generate a different
on

′

a , causing inconsistency (with the same consequence as
Figure 2). Existing stream processing systems tackle this
problem with a globally coordinated rollback [18], where
all stateful models invoke rollbacks to the latest globally
checkpointed state. However, such an approach causes a long
recovery time [84] due to the expensive globally coordinated
rollback, and a high normal case overhead because a reply can
only be released to a client after a global checkpoint finishes.

To address this problem, we observe that the inconsistency
is triggered because the failover breaks the causal
dependencies of snb on sna , and global consistency can
be maintained if HAMS can ensure the following statement:
snb always becomes durable after all states that snb depends
on (i.e., sna ) are durable. This can be achieved if we hold the
state of snb on Mb’s backup until sna is durable.

If the primary of Ma fails, HAMS promotes both Ma’s
and Mb’s backups as their new primaries, and now the new
primary of Ma is in state sn−1a and the new primary of Mb is
in state sn−1b , with all their causal dependencies maintained.
HAMS simply lets predecessor models of Ma resend its nth

output and lets the new primary of Ma and Mb re-process their
nth request. In a sense, HAMS regards each stateful model’s
execution as speculation before its state is durable, and HAMS
can safely discard the speculative states on a failover.

One concern of this approach is how HAMS handles
correlated failures if Ma’s primary and Mb’s backup fail
simultaneously. HAMS handles this issue by letting Mb’s
primary free its buffer for the state sn−1b only after Mb’s
backup applies snb (i.e., snb is durable and sn−1b becomes
outdated). Therefore, if such a correlated failure happens, Mb’s
primary can rollback to sn−1b by loading this state from its
(CPU) memory buffer to GPU.

Note that HAMS retrieves a stateful model’s complete state
(e.g., all parameters for an online learned model or all cell
states for an RNN) rather than state updates like Remus, so a
rollback can be achieved as a simple state overwriting. If Mb’s
backup does not fail, however, HAMS first tries to promote
Mb’s backup as the new primary instead of to rollback its
primary for fast failover, as rolling back the primary is slow
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Fig. 7: HAMS’s NSPB protocol in the simplified setting.

Algorithm 1: Each proxy records requests’ lineage

1 my_seq← counter of request sequence for the model
2 upon receiving req from pred_model with pred_seq
3 req.lineage.append

〈pred_model, pred_seq, my_model, ++my_seq〉
4 batch.atomic append(req)

5 upon receiving outputs for reqs from the model
6 for i in range(reqs.size()) do
7 outputs[i].lineage = reqs[i].lineage

because it involves stopping its current GPU computation and
copying the sn−1b from CPU memory to GPU, while the
backup already has sn−1b loaded on GPU and can takeover
immediately in HAMS (§VI-D).

Figure 7 illustrates NSPB in this simplified setting in six
steps: (1) Ma’s primary finishes processing rna and sends
output ona to downstream; (2) Ma’s primary sends sna to
its backup, which may be slow; (3) Mb’s primary finishes
executing request rnb and releases output; (4) Mb’s primary
sends snb to its backup, and the backup put this state into a
memory buffer; (5) Ma’s backup notifies Mb’s backup that sna
is durable; (6) Mb’s backup applies state snb .

D. NSPB for Complete Service Graphs with Batching

In HAMS, a stateful model’s state is denoted as a three-tuple
〈reqs, tensors, outputs〉 and HAMS replicates the state
after the model processes each batch of requests. reqs

contains the requests’ lineage information (explained in next
paragraph) in this batch. tensors are the internal state
of the stateful model, such as the value of the memory
cells in a LSTM or parameter values for an online-learning
model (§II-B). Outputs are the outputs from the model
after processing this batch of requests. As a stateful model
cannot re-execute its computation, HAMS saves this output
in the memory to handle a downstream model failure. A
saved output can be garbage-collected asynchronously when
the client request of this output leaves the service graph.

For a general DAG with batching, we need to make two
additional adaptations from the simplified protocol described
in the previous subsection. First, to track causal dependencies
for states in a general DAG, HAMS proxies need to maintain
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Algorithm 2: A HAMS backup’s algorithm

1 PFM[] ← Previous stateFul Models (see §IV-A)
2 NFM[] ← Next stateFul Models (see §IV-A)
3 durable_seqs ← a map for durable seq of each PFM
4 upon receiving〈reqs,tensors,outputs〉 from primary
5 for r in reqs do
6 if r.lineage has m in PFM then
7 m_seq = r.lineage.get(m)
8 wait(durable_seqs[m] ≤ m_seq)

9 for nm in NFM do
10 send (nm, 〈notify, my_id, reqs.last.out_seq〉)

11 upon receiving〈notify, prev_model, seq〉
12 set (durable_seqs[prev_model] = seq)

lineage information of each client request in the DAG, as
shown in Algorithm 1. Specifically, when a successor mode
Msucc receives a predecessor Mpred’s ith output oipred as
Msucc’s jth input rjsucc, it records the mapping between oipred
and rjsucc (Line 4). This mapping was trivial in a chain as i
always equals to j, but the mapping is essential in a general
DAG with sequence interleaving (e.g., Figure 1). When Msucc

releases an output for a processed request, it also carries
the request’s lineage information with the output (Line 7).
In essence, for a request in the service graph that has been
processed by a series of models, the request’s lineage records
the requests sequence number at each model processing it.

Second, in the simplified chain, a stateful model only has
one Previous statFul Model (PFM, see §IV-A for definition); in
a general DAG, however, a stateful model has multiple PFMs.
Therefore, when the backup of this stateful model wants to
apply the state generated for a batch of requests, it needs
to ensure that, all states generated by these requests in all
its PFMs are durable (Line 4-8 in Algorithm 2). After the
backup applies this state, it notifies all its next stateful models.
Although this mechanism needs a downstream model to wait
multiple upstream models’ states being durable, it does not
introduce overhead in the normal case, as the of upstream
models’s state propagation are in parallel with downstreams’
computation. This waiting is to ensure correctness and is
only triggered during network anomalies: an upstream’s state
propagation is so slow that it cannot finish even after a
downstream model finishes both execution and propagation.

To ensure global consistency to a client, HAMS’s frontend
needs to buffer an output to the client until all stateful models’
states generated by this request are durable. Effectively, the
frontend can be regarded as a special model, whose state
durable action is sending service outputs to clients.
E. Recovery Protocol for General Service Graphs

If an upstream proxy incurs an RPC timeout when trying to
send its output to a downstream proxy, the upstream proxy
suspects the downstream proxy to have failed and reports
the suspected failure to HAMS’s manager (§III-A). We first
explain HAMS’s recovery protocol for single-host failures.
If a stateless model (say Ml) is suspected to fail by its
predecessors, HAMS takes a hot standby (§V) of the model
(M ′l ) and reconstructs its dataflow. HAMS first contacts all

Ml’s successors’ proxies to collect the lineage information of
requests received from Ml. From this information, HAMS can
achieve two important information: the max sequence number
(max_out) of the original Ml’s output, and the max sequence
Ml processed for each predecessor model. Then, HAMS sets
the output sequence number of the newly launched M ′l to
max_out, and lets each predecessor model resend outputs to
M ′l from their max sequence.

If a stateful model (Mf ) is suspected to fail by its
predecessors, HAMS first contacts its backup to get the max
output sequence (max_seq). Then, HAMS checks the primary
of all downstream models in parallel to get a list of stateful
models that have processed requests whose lineage shows a
larger sequence than max_seq from Mf (§IV-C). For Mf and
models in the list, HAMS promote their backup and lets the
predecessors start to resend requests according to the lineage
information. Note that HAMS retrieves the full internal state of
a stateful model (§IV-B) but not state updates. Therefore, when
a backup is promoted as the new primary, the old primary can
immediately work as a backup by overwriting its state with
the new primary’s.

HAMS’s recovery protocol for correlated failures (i.e.,
failures of adjacent models) can be easily deduced by
integrating the two recovery protocols for single failures,
as the essential step during a failover is to reconstruct the
dataflow, for a newly launched stateless model or a new
stateful primary, based on the lineage information provided by
a failed model’s successors. If a contacted successor model
fails, this information can be conservatively re-constructed
from its backup (for stateful) or its successor (for stateless)
models. During the recovery of correlated failures, duplicate
intermediate requests may be resent, but HAMS can discard
them trivially because intermediate requests have sequence
numbers. Overall, HAMS can tolerate arbitrary failures on
stateless models, and at the same time, can tolerate one point
of failure (primary or backup) for each stateful model.

F. Proof Sketch of Correctness

In this subsection, we prove that HAMS’s failover ensures
global consistency for a general service DAG. If multiple
services share one model, they can be merged as a single
service DAG. To prove global consistency, it is sufficient to
prove the following statement. Given that a stateful model Mp

that processed rip, generated sip, and released oip to downstream
models; oip is transformed by a series of stateless models,
and is processed as rjq on next stateful model Mq . If the
resultant state sjq is durable, then after a failover, sip, oip will
be recovered unchanged. This statement is easily proved in
NSPB: sip, oip will be recovered consistently because HAMS’s
protocol lets a downstream model wait until all its upstream
models’ states are durable (§IV-C). Therefore, sjq being durable
derives that sip, oip are durable and can be trivially recovered.

This statement is sufficient for global consistency because
if sjq is not durable yet, the backup of Mq contains a past state
skq with k < j. Therefore, even if the upstream Mp generates
a different (non-deterministic) state and output for processing
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rip during failover, HAMS can safely discard sjq by promoting
the backup of Mq as the new primary.

A concern may be whether rjq will be recovered consistently.
Although oip stays consistent, rjq may diverge due to the
non-determinism of intermediate stateless operators. However,
the subtle point is that, these intermediate models are stateless,
so HAMS does not need to let them redo the computation to
generate internal states. As the conditions already state that sjq
is durable, we do not need to care about rjq .

V. IMPLEMENTATION

HAMS’s implementation has about 11K LoC, and HAMS’s
frontend and gRPC servers are based on Tensorflow Serving’s
code base [77]. In HAMS, all the operators and HAMS’s
components (i.e., frontend, manager, and proxies) are running
in containers. Overall, HAMS’s NSPB implementation has two
major components. First, the proxy (§III-A) of each operator
is written in C/C++ and agnostic to the ML operator served.
Communications among proxies are using gRPC [23] and
Protobuf [64]. Second, for each operator that deploys an
ML model, HAMS provides a library that implemented a
gRPC server and API for an asynchronous state retrieving
mechanism, described in §IV-B. We implemented HAMS’s and
all the models based on PyTorch v1.2 and CuDNN v10.0.

For each ML model deployed in HAMS, the ML
developer needs to implement two interfaces, initialize(),
run(). The initialize() will initialize the model (i.e.,
load the model from disk to GPU memory) and returns
references of tensors that contains a model’s state (e.g.,
model.parameters.data()). A developer will implement
the run() interface that takes the inputs of computation (either
training request or inference requests), and an event object to
explicitly identify the compute and update stage in HAMS. We
used PyTorchs API (i.e., torch.tensor.to_()) for non-stop
copy of tensor memory (the state) between GPU and CPU.

In our evaluation, integrating each of the evaluated ML
operators to HAMS added only 4-10 LoC with HAMS’s API.
To do fast failover for stateless operators, in HAMS, we run
one hot standby for each type of stateless operators among
all service graphs running in one cluster. For instance, HAMS
runs one hot standby with all necessary ML libraries loaded
for all KNN operators. By doing so, recovering one stateless
operator in a service graph requires only loading the operator’s
parameters, which takes only hundreds of milliseconds. We
used this optimized stateless standby operator setting for all
systems we evaluated to make a fair comparison on recovering
failed stateless operators (§VI-D).

VI. EVALUATION

A. Evaluation Setup

Our evaluation was done on a GPU farm of five hosts with
in total 100 CPU cores and 20 Nvidia RTX2080TI graphic
cards. Each graphic card is connected to the host with PCIe
3.0. The ping latency across hosts is 0.17ms and the network
bandwidth is 40 Gbps. We evaluated HAMS with 25 operators
of mature and well-known ML models, and parameters are

trained by us using well-known datasets (e.g., CIFAR-10 [38])
on PyTorch. We used these operators to build six practical ML
services: sentiment and subject analysis (SA), stock prediction
(SP), auto-pilot (AP), image query (IQ), online learning of
a VGG19 model (OL(V)) with a heavyweight model size
(548.05MB) and online learning of a MobileNet (OL(M))
with a lightweight model size (13.37MB). The online learning
service fine-tunes an image labeling model and infers the
image context (e.g., a man is with a dog) both for the inference
images and the labeled training images. These services are
often online and mission-critical, so HAMS’s high availability
support is desirable for these services.

Figure 8 and Figure 9 describes the semantic of each
service. All models’ algorithms are all well-known and taken
from third-party. All data sets are downloaded from third-party
databases or Internet, including Kaggle Speech [32], NYSE
Stock data [57], Twitter data [78], autopilot data [17],
UTKFace data [79], and CIFAR-10 [38].

We compared HAMS with three systems. To evaluate
HAMS’s overhead, we implemented a bare metal system by
disabling all fault tolerance features of HAMS. To evaluate
the effectiveness of HAMS’s NSPB protocol, we implemented
a HAMS-Remus system. In HAMS-Remus, for each stateful
operator, we applied a primary-backup protocol following
Remus [13]: after processing each request batch, the primary
stops, copies the state update into its memory buffer, holds the
output until the state is successfully received by the backup.

Same as HAMS, HAMS-Remus is a white-box approach
that replicates only a model’s state (i.e., parameters) and
safely ignores intermediate computation results or framework
memory (e.g., PyTorch). Therefore, we considered our
evaluation between HAMS and HAMS-Remus fair. Black-box
Remus (Remus-VM) will run slower than HAMS-Remus,
because Remus-VM must record all dirty GPU memory pages
(§IV-B) and replicate unnecessary memory (e.g., intermediate
computation results). In practice, only a portion of dirty GPU
memory pages store a stateful models state (parameters) [22].

Since the relevant system Lineage Stash (LS) [84] is not
open source, to compare HAMS’s performance overhead with
LS, we implemented LS on HAMS’s code base according to
the LS paper: the proxy of each operator logs requests and
requests’ interleaving locally, and propagates the requests’
interleaving along with its output; the local buffer in each
proxy is periodically and asynchronously checkpointed to
a global storage; each stateful operator is periodically (per
150 requests, the smallest default setting from the LS paper)
checkpointed for recovery. When a failure occurs, the stateful
operator is replayed from the latest checkpoint with the logged
requests and interleaving. We focus on these questions:
§VI-B : How is HAMS’s normal case overhead compared to

the relevant systems?
§VI-C : How effective is NSPB in maintaining HAMS’s low
performance overhead?

§VI-D : How is HAMS’s recovery time compared to LS and
HAMS-Remus?

§VI-E : What are the limitations of HAMS?
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Fig. 8: Service graphs of the six services we evaluated.

ID Size(MB) Input Output Model

SA
1 793 Audios Word list LSTM [20]
2 121.7 Words Sentiment LSTM [85]
3 121.7 Words Subject LSTM [85]

SP

2 34.8 Words Sentiment LSTM [85]
4 15.3 Stock Stock LSTM [53]
5 N/A Stock Stock ARIMA [9]
6 N/A Stock Stock KNN [87]

AP

1 90.9 Images Tagged image InceptionV3 [75]
2 375.9 Images Motion DeconvLSTM [20]
3 13.2 Map Route plan LSTM [20]
4 6.2 Meta Car move A* search [44]
5 29.6 Meta Car move CNN [8]

FD

1 90.92 Images Tagged image InceptionV3 [75]
2 199.7 Images Detect result DeconvLSTM [20]
3 90.92 Images Tagged image InceptionV3 [75]
4 209.3 Images Detect result DeconvLSTM [20]

OL-V 3 548.05 Images Labeled images VGG19 [73]
OL-M 3 13.37 Images Labeled images MobileNet [28]

Fig. 9: Services’ operators.

B. Performance

Figure 10 shows the latency that a request traverses a service
graph (normalized to latency of the bare metal) of the services
on four systems, including the bare metal, LS, HAMS, and
HAMS-Remus. The request batch sizes of all the six services
were 64, a typical setting for ML deployments. Overall,
compared with the bare metal, HAMS achieved 0.5% to 3.7%
latency overhead, which is comparable to the results reported
in the LS paper. HAMS achieved such a low latency overhead
due to two reasons. First, its NSPB protocol eliminates the
stop-and-buffer delay in every stateful operator in a service
graph, enabling the operators to process requests in an efficient
pipeline as the bare metal. Second, although HAMS does
records requests’ lineage information to construct the causal
dependency of the states across upstream and downstream
operators (§IV-D), HAMS’s logging time cost for each batch
of requests processed by each operator was at most 2.1ms,
much smaller than the processing time of an operator on a
batch of requests (typically, hundreds of milliseconds).

HAMS-Remus incurred the highest latency overhead
(6.0%-97.7%) because each stateful operator needs to
stop-and-copy the state to its local memory for every request
batch and to hold the output until the updated state is
received by the backup. Moreover, for a serving graph that
has multiple stateful operators on one path (e.g., AP), the
latency overhead of HAMS-Remus was even higher because
the request propagation was delayed by multiple times. For
SA, HAMS-Remus’s latency overhead was small because in the
SA service graph, a stateless operator (i.e., audio transcriber)
took the most time (1471.23ms), and HAMS-Remus’s fault
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Fig. 10: Normalized latency of six services running on four
systems.The request batch size is 64 for all services. The
latency is normalized to bare metal in order to fit in one figure.
The absolute value of HAMS’s latency is in Table I.

tolerance logic added only 101.23ms to latency.
To further understand HAMS’s performance overhead, in

Figure 11a, we analyzed the sensitivity of HAMS’s latency to
the batch sizes of requests on the six services. Overall, when
the request batch size of a service increases from 1 to 128,
HAMS’s latency overhead is greatly reduced. On the batch size
of 64 or 128, HAMS’s latency overhead was at most 3.8%.

HAMS’s latency overhead can be broken down into two parts
depending on the nature of a service. The first part is the online
learning services (OL(V) and OL(M)). When the batch size
was small (e.g., 1), HAMS’s latency overhead was almost as
high as HAMS-Remus. The reason is that the model operator’s
state (i.e., model parameters) is static with any request batch
size. When the batch size was small, the computation and
update stage of the downstream operator (e.g., operator 4 in
OL(V)) were both fast (e.g., 12.80ms and 2.43ms in OL(V)),
while HAMS’s state retrieve time (e.g., 134.52ms in OL(V))
and state delivery time to backup (e.g., 156.43ms in OL(M))
on this operator were the major factor for latency. Therefore,
NSPB’s non-stop primary-backup was not able to mask the
latency overhead on this small batch size. Fortunately, in
practice, the batch size of an online learning service is often at
least 64 [84], and HAMS’s latency overhead was merely 2.8%.

The second part is the inference services (SA, SP, AP,
and FD) that contain stateful operators (e.g., LSTM). HAMS’s
latency overhead was consistently small (less than 10%) when
the batch size varied from 1 to 128. The reason is that the
size of LSTM’s internal state is linear to the request batch
size (i.e., each request owns a copy of state). Hence, when the
batch size was small (e.g., 1), although the processing time of
downstream operators was small (e.g., 17.43ms in FD), and
HAMS’s state retrieval time (e.g., 11.63ms in FD) and state
delivery time to backup (e.g., 2.4ms in FD) of the operator
was also small. HAMS’s NPSB protocol can mask the latency
overhead on all batch sizes. We also evaluated HAMS-Remus
in Figure 11b under the same experiment setting. For all
combinations of services and batch sizes, HAMS-Remus’s
latency overhead was in average 5.51X slower than HAMS.

Figure 12 shows the services’ throughput in four systems,
normalized to bare metal. HAMS incurred little throughput
overhead. For SA, HAMS-Remus also had little throughput
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Fig. 11: Latency overhead of the six serviced deployed with HAMS and HAMS-Remus, with varied request batch size. For
batch 128 setting, VGG19 is N/A because a single GPU’s memory cannot hold the whole computation.

downgrade because the audio transcriber operator is the
throughput bottleneck of SA, and hence the SA’s throughput is
not affected by HAMS-Remus’s fault tolerance logic. Overall,
we consider HAMS’s normal case performance reasonable for
deploying real-world ML services.

In summary, HAMS incurs little normal case performance
overhead if the following two conditions are met. First, in a
stateful model, the time taken by the computation stage of
processing the (n+ 1)

th batch of requests is longer than the
time taken by HAMS to retrieve this model’s state updated by
the nth batch. If so, after processing a batch of requests, NSPB
can retrieve the model’s state in parallel with the computation
stage of the next batch (IV-B).

Second, each stateful model has downstream models in the
service DAG, so that the delivery of the stateful model’s state
can be done in parallel with the processing of downstream
models (IV-C). Otherwise, if a stateful model is the last
model in the DAG (e.g., in the AP service), its outputs must
be buffered at the frontend against a client until the state
updated by this client’s request is delivered to the model’s
backup. HAMS incurred little performance overhead in SA
because SA’s latency is dominated by the first operator. In our
evaluation, we found both conditions were often met when the
batch size of a service was no less than 64, a typical setting
in real-world deployments.

C. Effectiveness of HAMS’s Components

HAMS’s NSPB protocol contains two components for low
performance overhead: retrieving a model’s state without
stopping (§IV-B) and fast output releasing without waiting
for state delivery to the backup (§IV-C). To analyze the
effectiveness of NSPB’s two components, in Table I, we
evaluated the six services’ latencies with batch size 64 under
two settings: (1) disabling the fast output releasing and
buffering the output until the state delivered to the backup
(HAMS-S1), and (2) disabling the non-stop state retrieving
but still enabling the fast output releasing (HAMS-S2).
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Fig. 12: Throughput of six services, all are normalized to bare
metal. Bare metal’s absolute value (# requests processed per
second) is on the figure. The request batch size is 64.

The results show that HAMS-S1 incurred at most 53.94%
latency slowdown compared with HAMS in the normal
case, and that HAMS-S2 incurred at most 57.05% latency
slowdown compared to HAMS. Nevertheless, both HAMS-S1
and HAMS-S2 had lower latency than HAMS-Remus, which
indicated that the both components (§ IV) are essential.

HAMS HAMS-S1 HAMS-S2 HAMS-Remus
SA 1604.66ms 1640.32ms 1664.12ms 1671.88ms
SP 123.02ms 152.92ms 172.41ms 210.45ms
AP 289.06ms 320.18ms 349.80ms 375.94ms
FD 224.94ms 252.05ms 271.42ms 300.86ms
OL(V) 292.47ms 450.23ms 426.13ms 508.64ms
OL(M) 22.31ms 32.90ms 35.04ms 43.26ms

TABLE I: Effectiveness of HAMS’s components.
D. Recovery Time

We compared the recovery time cost of three fault tolerance
systems (HAMS, HAMS-Remus, and LS). For HAMS and
HAMS-Remus, we randomly picked one stateful operator in
each of the six services (under batch size 64 setting) and killed
its primary. For LS, we killed the primary operator in each
service at the 50th batch of requests from its latest checkpoint
(LS does a checkpoint per 150 batches of requests).

Overall, both HAMS and HAMS-Remus achieved a
sub-second level of recovery time. HAMS and HAMS-Remus
both have a hot standby backup for each stateful operator, so
the recovery time was mainly composed of failure discovery,
recovery protocol (§IV-E), and backup handover. LS achieved
a minute-level recovery time. The recovery time was mainly
composed of operator’s checkpoint loading (i.e., initialization
of an ML model) and the replay time. The replay time
depended on the timing of failures, and we chose one-third
of LS’s checkpoint interval (150 batches of requests). LS’s
paper [84] also reports minute-level recovery time. We set LS’s
checkpoint interval to every 1 batch of requests, so that LS
can have fast recovery time. LS incurred 81% latency overhead
on average, as LS essentially became HAMS-Remus: after a
stateful operator processes a request batch, LS needs to stop,
copy, and transfer its state to another host.

We also killed a stateless operator in each service and found
that HAMS, LS, and HAMS-Remus shows similar recovery
time with on average of 320.45 milliseconds, as the recovery
time for all three systems was dominated by the time to update
a service graph’s topology by adding the stateless hot standby
operator and by updating the proxies’ logic (§V).

To evaluate HAMS’s recovery on correlated failures, we
did three experiments on the SP service as a complicated
case and the AP service for the adjacent stateful models’
case (§IV-C). First, we killed O3 (i.e., operator ID#3 in
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HAMS HAMS-Remus LS
SA 116.12ms 109.23ms 124.43s
SP 142.43ms 123.12ms 32.04s
AP 150.01ms 119.01ms 56.94s
FD 143.25ms 127.34ms 47.82s
OL(V) 254.19ms 315.42ms 62.10s
OL(M) 134.74ms 141.84ms 21.09s

TABLE II: Recovery time of HAMS components (§IV).

Figure 8) and O4, a stateless model and a stateful model,
in the SP service, and we collected an average recovery
time of 344.79ms, dominated by the time taken to relaunch
a new stateless O3. Second, we killed the primaries of O2
and O3, two adjacent stateful models in AP, and collected
an average recovery time of 172.24ms, around 20ms longer
than the recovery time of only killing one of them because
HAMS iteratively identifies suspected failed models (§IV-E)
so it needs an additional timeout (20ms) to suspect the second
failures. HAMS’s recovery time on these two experiments
of correlated failures was just a little larger than that of a
single failure as HAMS recovers each failed model in parallel
(§IV-E).

Third, we triggered the case of Figure 6 using AP by
delaying state delivery of O2 and then killed its primary, and
we also killed O3’s backup at the same time. In this extreme
case, HAMS still ensures global consistency: we checked each
operator’s proxy log and found both the new primaries of
O2&O3, and their downstream models O4, O5, and clients, did
not receive conflicting requests. However, this case incurred a
recovery time of 731.24ms in average. This time was mainly
taken by O3’s primary for stopping its current execution on
GPU and rolling back to a previous state (§IV-C), which is
much larger than the time for promoting a backup to primary
(Table II). This result suggests that promoting downstream
models’ backups is indeed more efficient than rolling back
their primaries when an upstream stateful model fails, aligning
with NSPB’s design choice (§IV-C).

E. Limitations

HAMS has three limitations. First, HAMS needs 2X resource
for replicating each stateful model. We deem this resource
usage worthwhile because it is essential to ensure sub-second
failover time for mission-critical services. In practice, only
a small portion of models in a service graph is stateful
and needs the extra resource usage. Second, HAMS requires
developers to identify the computation and update stages of a
stateful model. However, with HAMS’s API, this identification
is simple and needs only 4-10 lines of code for each evaluated
model (§V). Third, HAMS’s NSPB protocol is only applicable
to ML operators that follows the compute-then-update (i.e., a
clear boundary between compute and update) manner (§II-B),
and typical ML operators (e.g., neural networks) follow this
manner. Studying other ML algorithms is left as future
work. HAMS is optimized for ML-context-aware, white-box
replication deployed in a service graph manner, while LS and
Remus do black-box replication for general services.

VII. RELATED WORK

ML serving systems, including Clipper [11],
Michelangelo [49], Tensorflow-Serving [58], TensorRT [81],
Pretzel [42], and Ray [50], simplifies deployment of ML
models by providing a web server frontend [11], [58], [81],
and runtime caching [11], [42], [58] or batching [11], [42],
[50], [58]. However, none of them focus on proving high
availability, so HAMS can be integrated to all these systems.

GranSLAm [34] and Inferline [10] optimizes deployment of
ML service graphs to meet service level latency requirements,
but they do not handle failures, so HAMS can benefit these two
systems. ParM [37] uses a parity model trained with erasure
code [45] to reconstruct prediction results of a failed model to
reply the clients timely. ParM does not support stateful models.
State Machine Replication (SMR) [12], [41], [43], [48], [59],
[63], [80] models a stateful application as a deterministic state
machine and feed replicas of the application with the same
sequence of requests. HAMS uses SMR to replicate its frontend
as it is deterministic. To handle non-determinism, crane [12]
and Rex [24] make thread scheduling deterministic [12], [24].
These systems are not suitable for ML models running on GPU
as GPU’s scheduling is non-deterministic in the architecture
level [30]. Plover [83], Eve [35], and Colo [15] compares
state update or outputs among replicas, and invoke a state
transfer on divergence. These systems fallback to Remus for
ML service graph as an ML model usually update all its state
after each batch of requests.
Fault tolerance systems for Dataflow [19], [51],
[52], including distributed ML training [1], [69], stream
processing [2], [6], [86], micro-service systems [2], [3], [21],
and network function virtualization [36], [39]. Among these
systems, Tensorflow [1], Apache Flink [6] Naiad [51], and
Horovod [69] uses periodical global checkpoint at runtime
and invokes a coordinated rollback on failures, leading to a
long recovery time [84]. Guard [40] further reduces normal
case overhead with asynchronous checkpoints. Ray [50],
CIEL [52], Drizzle [82], and Noria [21], Manetho [19], and
Lineage Stash [84] records the runtime lineage information to
reconstruct lost state on failures. These systems do not handle
operators’ internal non-determinism during replay.

VIII. CONCLUSION

We presented HAMS, an efficient system for deploying
highly available ML service graphs. NSPB combines the
conceptual strengths of primary-backup and checkpoint-replay
to meet all the three fault tolerance requirements (§I). HAMS
can serve as a recovery component in existing ML serving
systems, greatly improving their reliability. HAMS’s source
code is released on github.com/hku-systems/hams.
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