
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 1

FOLD3D: Rethinking and Parallelizing Computational and Communicational
Tasks in the Training of Large DNN Models

Fanxin Li, Shixiong Zhao∗, Yuhao Qing, Xusheng Chen,
Xiuxian Guan, Sen Wang, Gong Zhang, Heming Cui

Abstract—Training a large DNN (e.g., GPT3) efficiently on commodity clouds is challenging even with the latest 3D parallel training
systems (e.g., Megatron v3.0). In particular, along the pipeline parallelism dimension, computational tasks that produce a whole DNN’s
gradients with multiple input batches should be concurrently activated; along the data parallelism dimension, a set of heavy-weight
communications (for aggregating the accumulated outputs of computational tasks) is inevitably serialized after the pipelined tasks,
undermining the training performance (e.g., in Megatron, data parallelism caused all GPUs idle for over 44% of the training time) over
commodity cloud networks. To deserialize these communicational and computational tasks, we propose the AIAO scheduling (for 3D
parallelism) which slices a DNN into multiple segments, so that the computational tasks processing the same DNN segment can be
scheduled together, and the communicational tasks that synchronize this segment can be launched and overlapped (deserialized) with
other segments’ computational tasks. We realized this idea in our FOLD3D training system. Extensive evaluation shows FOLD3D
eliminated most of the all-GPU 44% idle time in Megatron (caused by data parallelism), leading to 25.2%-42.1% training throughput
improvement compared to four notable baselines over various settings; FOLD3D’s high performance scaled to many GPUs.

Index Terms—Deep Learning, distributed training, GPU, DNN, 3D parallelism, pipeline parallelism, Machine Learning

F

1 INTRODUCTION

THE high modeling capacities of a large DNN (e.g.,
GPT3 [1] with 175 billion parameters) have made

training or fine-tuning (essentially, training) such a model
prevalent and frequent on commodity clouds. Various cloud
tenants, including small enterprises, research labs, and indi-
vidual researchers, frequently train or fine-tune such a large
DNN for broad applications [2], [3], [4], [5], [6], [7] with their
own private datasets and application needs. The working-
set memory (i.e., in-GPU memory, without further specified)
needed for training the model far exceeds the capacities
of individual accelerators (e.g., GPUs), flourishing parallel
techniques that split a DNN model across devices.

3D parallelism [8], [9] (Figure 1a) is a crucial DNN
training technique that combines and orchestrates three par-
allelism dimensions. Tensor parallelism (TP) splits a single
DNN operator (often too large to fit in one device) over
devices. Pipeline parallelism (PP) [10], [11] places different
operator sets (i.e., pipeline stages) of a DNN model over de-
vices and pipelines the execution of multiple micro-batches
(i.e., splits of a single SGD batch which is a set of training
inputs for each SGD [12] iteration) to reduce devices’ idling
time, as Figure 4 shows. Data parallelism (DP) replicates
the model across devices, lets each replica handle one
micro-batch, and synchronizes the gradients produced by

∗ Shixiong Zhao is the corresponding author.

• Fanxin Li, Shixiong Zhao, Yuhao Qing, Xusheng Chen, and Xiuxian
Guan are with the Department of Computer Science, The University
of Hong Kong, HKSAR, China. E-mail: {fxli, sxzhao, yhqing, xschen,
xxguan}@cs.hku.hk.

• Sen Wang and Gong Zhang are with the Theory Lab, 2012 Labs,
Huawei Technoloies, Co. Ltd, HKSAR, China. E-mail: {wangsen31,
nicholas.zhang}@huawei.com.

• Heming Cui is with the Department of Computer Science, The University
of Hong Kong, HKSAR, China, and also with Pujiang Lab, Shanghai,
China. E-mail: heming@cs.hku.hk.

Manuscript received 13 Jul 2022; revised 22 Nov 2022 and 29 Jan 2023;
accepted 14 Feb 2023.

all micro-batches after finishing one SGD batch [13].
Overall, the end-to-end performance of 3D parallel train-

ing can be divided into two runtime phases: a configuration
phase and a scheduling phase. First, given a DNN model and
an AI cluster of N GPU devices connected by hierarchical
inter-links (e.g., NVLink [14] within a host and RDMA [15]
across hosts), the configuration phase determines the num-
ber of splits in TP t, the number of splits in PP p, and the
number of DP replicas d, where t ∗ p ∗ d = N . Second,
given the above 3D configuration, the scheduling phase
determines the order in which the devices actually execute
the computation tasks of each micro-batch and communica-
tion tasks between devices (TP.sync, PP.sync, and DP.sync in
Figure 1a). The two phases collectively decide the effective
total GPU ALU utilization, under the bounds of per-GPU
memory and the heterogenous inter-links.

Many recent works [8], [16], [17] focus on finding an
optimal 3D configuration. For example, to place DNN mod-
els that are too large to fit in one device, while TP and
PP both fit for splitting a model, Megatron-PTD [8] and
Piper [16] prefer TP over PP with the existence of fast inter-
links such as NVLink (often available within a host), as TP
often achieves higher computational efficiency [8] in such
cases. Inversely, for inter-links such as RDMA and Ethernet,
PP is favored [8], [16]. Specifically, the RDMA or Ethernet
in the most high-end commodity cloud (e.g., AWS) is up to
400Gbps for the entire cluster. Moreover, the networks in the
same commodity cloud are shared by many tenants. Even
for the top-of-the-line AWS cloud, the network bandwidth
for a single tenant is often merely up to 70 or 80 Gbps
(confirmed in §6).

Unfortunately, despite much effort in optimizing the
configuration phase, in the scheduling phase, existing 3D
training systems are inevitably trapped in a serialization
problem, where heavy communication blocks the compu-
tation and causes devices idling. Specifically, as shown in



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 2

0 1 2 3 4 5
pipelined

micro-batches

DP replicas

DP0

DP1

0 1 2 3 4 5

0 1 2 3 4 5

Interleaved

0-1

Interleaved

2-3

Interleaved

4-5

0 1 2 3 4 5DP0

DP1

DP.sync




DP.sync




DP.sync




DP.sync




DP.sync




DP.sync




FIFO Scheduling (e.g., PipeDream)

Interleaved FIFO Scheduling (e.g., Megatron)

AIAO Scheduling (FOLD3D)

TP1

A B

TP
.s
yn
c

TP0

TP
.s
yn
c

TP1

C D

TP
.s
yn
c

TP0

TP
.s
yn
c

PP.sync

PP.sync

TP1
C L

TP
.s
yn
c

TP0 TP
.s
yn
c

PP.sync

PP.sync

TP1
A B

TP
.s
yn
c

TP0

TP
.s
yn
c

TP1
C D

TP
.s
yn
c

TP0
TP

.s
yn
c

PP.sync

PP.sync

TP1
C L

TP
.s
yn
c

TP0 TP
.s
yn
c

PP.sync

PP.sync

PP0 PP1 PPp

DP0

DP1

A B C D L...

A DNN model with 12 layers (A-L)

A 3D configuration example of the DNN model

DP.sync

a) 3D Parallelism b) Per-GPU Scheduling with Forward Pass Omitted 

DP replicas

Gradients produced along PP and DP dimension

12 copies of DNN gradients produced
by 12 micro-batches 

Each DNN and its gradients is sliced

into 4 DNN segments in AIAO

Per-GPU Scheduling of PP computation and DP communication 

pipelined
micro-batches

0 PP computational task with
input micro-batch 0Gradients of a whole DNN 


produced by one micro-batch

Activation lifecycle of 

micro-batch 0 (the earliest)

DP communicational task for 

gradients of DNN (segment) 

Activation lifecycle of 

micro-batch 5 (the latest)


Fig. 1: a) 3D Parallelism. Each gray box is a GPU device. Sync stands for the communications that synchronize each
parallelism dimension. b) A conceptual illustration of the serialization problem and our idea. The gradient computational
tasks are represented by backward passes of DNN training (with forward passes omitted and full scheduling being shown
in Figure 4). In AIAO scheduling, a copy of DNN gradients produced by micro-batch i is sliced into four segments (with
distinct colors), and the same segments (i.e., the same colored ones) are grouped together during pipelining. Compared
with the FIFO-based scheduling, our AIAO scheduling moves the DP.sync tasks off the performance critical path by
introducing larger total lifecycles of activation checkpoints and resulting in a larger peak GPU memory.

Figure 1b, the gradients of a whole DNN in 3D parallel
training are computed as follows: (1) along the PP dimen-
sion, on each device (i.e., pipeline stage), a DNN’s gradient
copies are computed by pipelining multiple micro-batches
(six micro-batches in Figure 1b) and accumulated locally on
each device; (2) along the DP dimension, the accumulated
gradients of the whole DNN produced by different DP
replicas (two replicas in Figure 1b) are synchronized across
devices by a heavyweight all-reduce [18] communication
(DP.sync tasks).

However, in existing 3D parallel systems [8], [16], [17],
[19], the micro-batches along the pipeline dimension are
usually scheduled with a First-In-First-Out (FIFO) order in
terms of micro-batch ID: a later enqueued task (with larger
micro-batch ID) should not start until an earlier enqueued
task (with smaller micro-batch ID) finish. Meantime, the
launch of the DP.sync communicational tasks which syn-
chronize the gradients produced by the pipelined micro-
batches across DP replicas must be serialized after the
accomplishment of the last pipelined computational task
(i.e., micro-batch 5 in Figure 1b).

Theoretically, most conventional (pure) pipeline parallel
training systems [10], [11], [20], [21], [22] adopt the FIFO
scheduling principle so as to minimize the average lifecycles
of the computational tasks’ working-set memory residing in
the limited and expensive GPU memory [23]. 3D parallel
training systems inherit this principle (e.g., Megatron [8]
and Alpa [17] all select a FIFO-based scheduling, named
1F1B), since even with a bunch of memory squeezing
techniques (e.g., activation checkpointing [8], [22]), GPU
memory is still a major bound for 3D parallel training
scaling large [16], [19], [20], [24], [25]. Nevertheless, because
of the serialization problem, the performance of these 3D
parallel training systems is inevitably capped by the sum of
computational and communicational costs (see §3.3).

Empirically, in the four most notable baseline systems we
extensively evaluated (e.g., Megatron v3.0 [26], the latest 3D
parallel training system released by Nvidia in May 2022),

the serialization problem makes the DP.sync communica-
tional tasks heavily block the computational tasks of the
next training step and causes GPUs to idle for up to 44% of
the total training time, over a 256 A100 cluster with 200Gbps
inter-host links (an extremely private cluster setting that
the entire cluster is used by us only, see §6). When using
Megatron to train a GPT3-18B model over a 200Gbps cloud
network, the per-GPU hardware utilization is merely 67.4
TFLOPs (FOLD3D achieved 95.8 TFLOPS).

In this paper, we argue that inheriting the best scheduling of
each individual parallelism dimension does not necessarily result
in the best holistic scheduling for 3D parallelism on commodity
clouds. Instead, by relaxing the optimality of scheduling in
the PP dimension, we can achieve a better scheduling for 3D
parallelism that greatly alleviates the serialization problem,
leveraging two subtle observations (depicted in Figure 1b).

The first observation is that, although there inevitably
exists a serialized dependency between the PP computa-
tional tasks (with each processing the whole DNN’s gradients
from a micro-batch) and the DP communicational tasks
(which synchronize the whole DNN’s gradients with other
DP replicas), we can slice a DNN model into segments
(conceptually, sub-DNNs) with each containing distinct con-
secutive DNN layers, so that both the PP computational and
DP communicational tasks can be divided into sub-tasks
(per sub-DNN/segment). By doing so, although within each
sub-task, the serialization dependencies still exist, we can
schedule (group) subtasks that process the same segment’s
gradients (e.g., the gradients in green in Figure 1b) from
all micro-batches together, so that the DP.sync tasks for this
part’s gradients (e.g., DP.sync for green gradients) can be im-
mediately launched and overlapped with the computational
tasks of the other segments (e.g., yellow computations).

We realized this observation in the All-In-All-Out
(AIAO) scheduling (Figure 1b), a holistic 3D parallel
scheduling, where the scheduling of computational tasks
does not depend on input (micro-batch) IDs but is based on
the segment (sub-DNN) dependencies. Thus, from the view



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 3

of input micro-batches, our AIAO essentially needs all input
micro-batches (all-in) enqueued, so as to allow the grouped
scheduling of segment sub-tasks corresponding to these
micro-batches. The full scheduling depicted in Figure 4 and
§3.2 shows that within each segment of the model, our
AIAO separately groups the forward pass and backward
pass of the pipelined computational tasks on this segment
and schedules the grouped tasks according to segments’
forward-backward dependencies. To alleviate serialization,
a segment’s DP.sync task is scheduled to be overlapped with
both the backward and forward pass computational tasks in
a mirrored way.

However, one challenge for the above AIAO scheduling
is that, altering the FIFO principle would inevitably intro-
duce longer activation lifecycles in total and increase the
peak memory usage of GPUs (§3.3).

The second observation to address this challenge is
that, there exists an invariant architectural opportunity for
any pipeline schedule, where all micro-batches share the
same size of computation window (the sum of one micro-
batch’s forward pass and backward pass) which allows
offloading [27] critical activation checkpoints to the host
memory, despite the order of micro-batches enqueueing and
dequeueing. By doing so, the increased memory burden is
shifted from GPUs to hosts, as the CPU memory on a host
is orders of magnitude larger than the memory capacity of
each GPU (§2.1). Leveraging this observation, the AIAO
scheduling is accompanied with two key memory squeez-
ing mechanisms (§4): an intra-segment offloading mecha-
nism and an inter-segment lazy communication mechanism,
making the AIAO scheduling incur negligible extra GPU
memory burden when training large DNNs (Table 2).

We implemented the AIAO scheduling in FOLD3D
based on Megatron [26], a well-engineered and open source
3D training system, by adding 5371 LoC. We compared
FOLD3D against Megatron-SP [28] (v3.0.2, the latest re-
lease), Megatron-PTD [8] (v2.5.0), DeepSpeed Zero3 [29]
(DSpeedZ3), and DeepSpeed 3D [19] (DSpeed3D), covering
three notable and open source 3D training systems and one
state-of-the-art data parallel training system (DSpeedZ3).
Both FOLD3D and Megatron-SP are enabled with sequence
parallelism (§5), one of the latest memory squeezing tech-
niques [28] complementary to 3D parallelism. Our evalu-
ation was done both over a high-profile cluster (256 A100
GPUs) and a middle-profile cluster (64 V100 GPUs). The
numbers of GPUs evaluated are comparable to the latest
works [16], [17] that study 3D training. We evaluated all
five notable large Transformer [30] based models [1], [29],
[31], [32], [33] evaluated by recent systems [8], [16], [29].
The extensive evaluation shows that:

• FOLD3D is high-performance on commodity cloud net-
works. FOLD3D achieved 25.2%-42.1% higher through-
put than the baselines with all systems being deployed
on both the A100 cluster and the V100 cluster.

• FOLD3D’s high performance is robust. By setting var-
ious stringent model shapes (e.g., a slip model with a
large layer number and a small layer size), FOLD3D’s
high performance was consistently observed.

• FOLD3D is scalable. Our scalability evaluation over 256
A100 GPUs shows that FOLD3D’s performance gain
over Megatron was stable (∼31%) from 64 GPUs to 256

64 128 256
GPU Number

0

5

10

15

20

25

Ag
gr

eg
at

ed
 th

ro
ug

hp
ut

of
 a

ll 
GP

Us
 (P

FL
OP

s) Fold3D
Megatron

DSpeed3D
DSpeedZ3

Fig. 2: Weak Scaling of FOLD3D on different amounts of
GPUs. FOLD3D consistently achieves high TFLOPs per
GPU under various GPU numbers. We used GPT-3 18B, GP-
3 39B, GPT-3 81B for each amount of GPUs.

GPUs with the model’s scale increased correspondingly
(i.e., weak scaling, see Figure 2). When each tenant
trains a GPT-3 instance, FOLD3D can save the tenant’s
electricity for about 100,000 KWh over 256 A100 GPUs,
which is roughly equal to the electricity used by 100
families per year or tens of electric cars’ lifetime (§6.5).

• The increase (relaxing) of FOLD3D’s memory consump-
tion is moderate. Table 2 shows that for each host
with eight A100 GPUs, FOLD3D consumed in total
8.1GB-17.3GB extra CPU memory, while FOLD3D’s
GPU memory usage was comparable to baselines’.

Our contributions are as follows. We take the first step
to systematically summarize (Figure 1b) and quantitatively
model (§3.3) the serialization problem in existing 3D train-
ing systems. We propose the idea of folding, design the
AIAO scheduling, and practically realize it in FOLD3D.
Leveraging these contributions, we maximally overlap com-
putation and communication tasks in 3D parallel train-
ing. FOLD3D can greatly promote many more researchers
and enterprises to enjoy the benefit of training and fine-
tuning large DNN models on commodity clouds. We be-
lieve FOLD3D can benefit various emerging large DNN
paradigms such as Mixture-Of-Experts (MoE) [34], [35],
Pathways Language Model (PaLM) [36] and Multi-Modal
Learning [37], because 3D parallelism is the foundation
for these paradigms to scale large; meantime, we envision
that it would be challenging to fuse the AIAO scheduling
with these new paradigms (§7), and we leave this in fu-
ture work. Our code and evaluation results are released at
github.com/hku-systems/fold3d.

2 BACKGROUND AND MOTIVATION

Existing large models with billions of parameters trained
on 3D parallel training systems are mainly stacked up with
homogeneous blocks (e.g., transformer block). The repeated
structure of these models is their fundamental advantage to
obtain better model capacity (and thus higher accuracy) by
simply scaling up the model size [30], [31]. In this paper,
same as Megatron [8], we assume all models are repeatedly
stacked transformer models.

2.1 Parallelism Dimensions

ML model training proceeds with iterations of forward
and backward pass computations on micro-batches of a
dataset. However, fitting existing large models into a single

github.com/hku-systems/fold3d


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 4

GPU for training is unrealistic [25], which expedites the
development of parallel training systems that cope with two
crucial requirements. First, a system should fit the model’s
parameters and intermediate results (e.g., activation maps)
into a GPU’s memory. Even on the top-of-the-line AWS AI
clusters, each GPU’s memory is limited (e.g., an A100 GPU
has 40GB or 80GB memory), while the CPU memory on a
host is orders of magnitude larger (e.g., Terabytes) and much
cheaper than a GPU’s memory. Second, a system should be
capable to scale up the training to more GPUs. Certainly, all
these two requirements should be met as efficiently (more
effective FLOPS per GPU) as possible.
Data Parallelism (DP). In data parallelism [38], each worker
has a copy of the model, and the dataset is split across
workers. The workers synchronize their gradients period-
ically via an all-reduce [18] communication (i.e., DP.sync) to
maintain a consistent version of the parameters. For a large
model which does not fit in a single worker, although pure
DP practice [19], [39], [40] can be used to train a large model
with various optimizations, it takes excessive extra critical
path costs for offloading activations and optimizer states to
CPU memory [27] and NVMe storage [41], or sharding them
across GPUs [29]. Moreover, its scalability [8] is bounded by
communication on low-end networks and the size of a total
batch (a set of data for producing each parameter update).
Tensor Parallelism (TP). Tensor (Model) parallelism [25]
partitions input and parameter tensors of a layer (e.g., trans-
former multi-head self-attention layer [30]) across GPUs.
Within each repeated (transformer) block (a set of layers),
during both forward pass and backward pass, TP requires
an all-reduce communication (i.e., TP.sync) to aggregate the
tensors between repeated blocks, which typically lies on
the critical path and is network-intense. Therefore, TP is
usually deployed across GPUs within the same server to
use fast intra-server GPU-to-GPU links (e.g., NVLink [42]).
TP is mainly adopted as a complementary technique to
help existing parallel training systems [8], [19], [25], [41] to
support larger transformer layers.
Pipeline Parallelism (PP). Pipeline (model) parallelism [10],
[11], [20], [22], [43] shards the layers of a model across
multiple GPUs; each shard is called a pipeline stage; acti-
vation tensors are propagated between stages via a point-
to-point communication (i.e., PP.sync). A total batch is split
into micro-batches (a micro-batch is the minimum unit for
each GPU’s forward and backward pass computations); ex-
ecution is then pipelined across micro-batches. When used
on symmetric models, each stage (GPU) can be assigned an
equal number of layers to maximize pipeline efficiency [8].

To retain the convergence guarantee of Stochastic Gradi-
ent Descent [44] training, existing PP-enabled systems [19],
[22], [45] need to insert a pipeline flush between each
two parameter updates, where the systems wait until all
current micro-batches in the pipeline finish computing and
perform a parameter update, and then restart the upcoming
pipelined training iteration. Inserting such a pipeline flush
inevitably causes pipeline bubbles (i.e., work idling), as
shown in Figure 4. Existing PP scheduling schemes are
in the following two categories, in terms of how forward
passes are interleaved with backward passes in a pipeline.

AFAB Scheduling. GPipe [22] proposes the all forward
all backward (AFAB) scheduling where on each pipeline

stage, the forward passes for all micro-batches of a total
batch are first executed, followed by backward passes for
all micro-batches. For its simplicity and easy-to-integrate
nature, AFAB scheduling is widely adopted by systems such
as HetPipe [45] and DeepSpeed 3D [19].

1F1B Scheduling. Pipedream [10] proposes the 1F1B
scheduling where one backward pass immediately pre-
empts the execution as soon as its required forward pass
is finished (for the last stage) or its depending backward
passes are finished (for other stages). 1F1B scheduling is
adopted by Megatron [8] and recent pure pipeline par-
allel training systems [22] (e.g., Out-of-Order [21]) with
a flush inserted. Compared with AFAB scheduling, 1F1B
scheduling costs less GPU memory footprint. Nevertheless,
we embrace a CPU offloading scheme (§4) of activation
checkpoints to make the AIAO scheduling of FOLD3D not
abuse GPU memory.

Overall, despite the differences between the above
scheduling algorithms in terms of how forward passes
and backward passes are interleaved, all existing pipeline
scheduling algorithms are FIFO-based scheduling, as shown
in Figure 1b. Specifically, from the view of forward pass
computational tasks and backward pass computational
tasks separately, micro-batches are executed in the order of
they being fed into the execution queue; and later enqueued
micro-batches need to wait for the dequeueing of the previ-
ous micro-batches’ tasks. In this paper, instead of following
this FIFO principle, FOLD3D enqueues all the micro-batches
to conduct its subtle scheduling (§3.2) of computational
tasks that alleviates the serialization problem in existing 3D
parallel training systems.

2.2 3D Parallelism

Despite many efforts made towards all the three aforemen-
tioned scaling dimensions of parallel training, none of a
single scaling dimension could scale infinitely. The reason is
that a single scaling dimension may be bounded by various
scaling efficiency bounds [8]: TP incurs frequent and high-
volume intra-server communication tasks and thus is only
suitable within a server (host); DP is bounded by cross-
server DP.sync communication tasks and the total batch
size [8]; PP is bounded by bubbles and the total number
of layers [10]. 3-Dimensional Parallelism (3D) combines all
these three dimensions so that when one dimension reaches
its scaling efficiency bounds, a 3D parallel system can scale
along other dimensions.
The Serialization Problem Existing 3D parallel training
systems all suffer from the serialization problem: most of
the communicational tasks are serialized after the compu-
tational tasks and scattered along the performance critical
path. When these systems are deployed on commodity
clouds with a few hundred of Gbps networks, the serializa-
tion problem is getting much more pronounced. Compared
to the reported experiments from Megatron [8] over a cluster
of 256 A100 GPUs with 1.6Tbps dedicated inter-host links,
the per-GPU hardware utilization sharply dropped from
around 140 TFLOPs to 67.4 TFLOPs, when training a GPT3-
18B model over a 200Gbps cloud network. Note that in the
commodity cloud, each tenant can only get 70 to 80 Gbps
bandwidth (§6).



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 5

Model

Training


Input

Executor

L(A) L(B)

Offloader

Activation

PP.sync DP.sync

TP.sync

CPU RAM NCCL

GPU 0

TP0

Communicator

Fig. 3: FOLD3D’s Architecture. L(A) and L(B) mean layer
A and layer B respectively. The gray boxes are FOLD3D’s
runtime components.

3 FOLD3D SYSTEM

3.1 Architecture Overview

Figure 3 shows the architecture of FOLD3D. To deploy a
model for training, a user needs to feed the model and
the 3D parallelism configuration (generated by Megatron-
PTD [8] or Piper [16]) into FOLD3D (§4), and FOLD3D
will automatically select a proper segment number (§4) and
generate an AIAO schedule for the model. Empirically,
we find that the 3D parallelism configuration generated by
Piper is also optimal for FOLD3D (see §6.2).

For each GPU device, FOLD3D launches one runtime
containing an executor, a communicator, and an offloader.
On each GPU, FOLD3D’s executor runs a partition of the
AIAO scheduling as shown in Figure 4 and assigns the
communication (sync) tasks to FOLD3D’s communicator. The
communicator schedules the communication tasks. The of-
floader manages activation checkpoints (§4).

Executor. Each executor is a dedicated main process
which manages one GPU device, controls the computation
scheduling, and interacts with FOLD3D’s communicator
and offloader. In particular, the executor runs a static AIAO
scheduling, performs the training computation tasks (in-
cluding both forward pass and backward pass computa-
tions), and assigns three types of communication (sync)
tasks (including DP.sync, TP.sync, and PP.sync) to the com-
municator. Meanwhile, the executor informs the offloader
of the execution status before each computation task starts,
so that the offloader can manage the checkpoint offload-
ing/prefetching without hurting training performance on
the critical path.

Communicator. Each communicator is the executor’s
child thread, which receives communication tasks and
schedules the tasks to the underlying communication li-
brary (Algorithm 2). We implemented a preemptive com-
munication scheduling mechanism in the communication
library. Specifically, the latency-sensitive communication
tasks (PP.sync) can preempt the all-reduce communication
tasks (DP.sync, TP.sync) to avoid being blocked by the all-
reduce tasks (§5).

Offloader. Each offloader is the executor’s child thread,
which coordinates with the executor and offloads the ac-

tivation checkpoints to the CPU memory after they are
generated in forward passes and prefetches them back to
GPU memory before they are required in backward passes.

3.2 AIAO Scheduling

We propose AIAO (Figure 4), a new 3D parallel scheduling
algorithm that co-schedules and parallelizes the compu-
tation and communication tasks to fully (but not overly)
utilize both the GPU devices’ computation capacity and the
networks’ communication bandwidth. AIAO works in three
steps: first, it folds a model into segments (step 1); second,
it pipelines each segment across all pipeline stages (step 2);
third, it schedules the communication tasks to maximally
parallelize them with the computation tasks (step 3). Same
as Megatron, AIAO is bulk synchronous [46], where a
pipeline flush is inserted for parameter update to retain the
convergence guarantee of Stochastic Gradient Descent [47]
training.

Step 1. As shown in Figure 4, the first step is the
folding of all layers: given a 3D parallelism configuration
with PP stage number denoted as p, each model is divided
(folded) into a number (denoted as ns, inferred in §4) of
segments, and each segment is further divided into p stages.
For example, if one model has 12 layers (from A to L,
alphabetically), ns=2, and p=3, FOLD3D assigns GPU 0 with
layers (A,B), (G,H); GPU 1 with layers (C,D), (I, J); GPU
2 with layers (E,F ), (K,L). Although Megatron [8] already
has a segmenting scheme, Megatron’s scheme differs from
FOLD3D’s in purpose: Megatron’s scheme is designed to
reduce bubbles in its 1F1B pipeline, and the segmenting
scheme in FOLD3D’s AIAO scheduling is designed to un-
leash the potential of DP.sync overlapping with computa-
tion tasks. Moreover, FOLD3D’s segmenting scheme is used
to balance the deducted DP.sync tasks (by overlapping) and
the increased PP.sync tasks (by folding).

Step 2. The fundamental idea of step 2 is that the
pipeline scheduling should be performed in a way that a
model layer’s gradient should be attained first (thus the
layer’s computation tasks should be scheduled in a bun-
dle) for decoupling the dependency of this layer’s DP.sync
communication task with its computation task, so that this
DP.sync communication task can be scheduled to overlap
other layers’ computation tasks. Therefore, in the second
step, AIAO schedules the attained computation tasks in
a bundled and spiral way, where each segment is fur-
ther split and pipelined across all stages during the de-
fault injection of multiple micro-batches in any PP-enabled
training schedules (§2.2). For example, in Figure 4, during
the forward passes of AIAO, the first segment is further
partitioned into p (three) stages, and the first segment
((A,B), (C,D), (E,F )) is injected with nine micro-batches
(defined by the user) in a pipelined way in their forward
passes. The following segments are then executed subse-
quently.

During AIAO’s backward passes, reversely, the last seg-
ment is first executed ((L,K), (J, I), (H,G)) in the pipeline.
The reason is that a backward pass must always start
from the last layer of a DNN model [48]. Meanwhile, in
each stage, after finishing the second segment’s backward
pass computation tasks (which take roughly twice the time



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 6

A L

0:
A,
B

2 3 4 5 6 7 8 9

0:
G
,H 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0:
H
,G 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0:
B,
A

2 3 4 5 6 7 8 9

1:
A,
B

2:
A,
B

3:
A,
B

2 3

4:
A,
B

5:
A,
B

6:
A,
B

2 3

7:
A,
B

8:
A,
B

1:
G
H

2:
G
H

3:
G
H

2 3

4:
G
H

5:
G
H

6:
G
H

2 3

7:
G
H

8:
G
H

1:
H
G

2:
H
G

3:
H
G

4:
H
G

5:
H
G

2 3 4

6:
H
G

7:
H
G

8:
H
G

1:
BA

2:
BA

3:
BA 2 34:
BA

5:
BA

6:
BA 2 37:
BA

8:
BA

1:
G
,H

2:
G
,H

3:
G
,H 2 3

1:
G
H

2:
G
H

4:
G
,H

5:
G
,H

6:
G
,H 2 3

1:
G
H

2:
G
H

7:
G
,H

8:
G
,H

1:
H
,G

2:
H
,G

3:
H
,G 2 3

1:
H
G

2:
H
G

4:
H
,G

5:
H
,G

6:
H
,G 2 3

1:
H
G

2:
H
G

7:
H
,G

8:
H
,G

1:
B,
A

2:
B,
A

3:
B,
A

2 31:
BA

2:
BA

4:
B,
A

5:
B,
A

6:
B,
A

2 31:
BA

2:
BA

7:
B,
A

8:
B,
A

0:
C
,D

0:
C
,D

0:
C
,D

1:
C
,D

2:
C
,D

3:
C
,D

4:
C
,D

5:
C
,D

6:
C
,D

7:
C
,D

8:
C
,D

0:
I,J

1:
I,J

2:
I,J

3:
I,J

4:
I,J

5:
I,J

6:
I,J

7:
I,J

8:
I,J

0:
E,
F

1:
E,
F

2:
E,
F

3:
E,
F

4:
E,
F

5:
E,
F

6:
E,
F

7:
E,
F

8:
E,
F

0:
K,
L

1:
K,
L

2:
K,
L

3:
K,
L

4:
K,
L

5:
K,
L

6:
K,
L

7:
K,
L

8:
K,
L

0:
L,
K

1:
L,
K

2:
L,
K

3:
L,
K

4:
L,
K

5:
L,
K

6:
L,
K

7:
L,
K

8:
L,
K

0:
J,
I

1:
J,
I

2:
J,
I

3:
J,
I

4:
J,
I

5:
J,
I

6:
J,
I

7:
J,
I

8:
J,
I

0:
D
,C

1:
D
,C

2:
D
,C

3:
D
,C

4:
D
,C

5:
D
,C

6:
D
,C

7:
D
,C

8:
D
,C

0:
F,
E

1:
F,
E

2:
F,
E

3:
F,
E

4:
F,
E

5:
F,
E

6:
F,
E

7:
F,
E

8:
F,
E

0:
A,
B

2 3

1:
A,
B

2:
A,
B

0:
C
,D

1:
C
,D

2:
C
,D

0:
E,
F

1:
E,
F

2:
E,
F

0:
K,
L

0:
L,
K

1:
L,
K

2:
L,
K

0:
F,
E

1:
F,
E

2:
F,
E

1:
K,
L

2:
K,
L

0:
J,
I

0:
H
,G

1:
J,
I

1:
H
,G

2:
J,
I

2:
H
,G

0:
D
,C

0:
B,
A

1:
D
,C

1:
B,
A

2:
B,
A

2:
D
,C

3:
L,
K

4:
L,
K

5:
L,
K

3:
F,
E

4:
F,
E

5:
F,
E

6:
L,
K

7:
L,
K

8:
L,
K

6:
F,
E

7:
F,
E

8:
F,
E

6:
D
,C

6:
B,
A

8:
D
,C

8:
B,
A

7:
B,
A

7:
D
,C

8:
J,
I

8:
H
,G

8:
K,
L

7:
K,
L

6:
K,
L

3:
E,
F

4:
E,
F

5:
E,
F

3:
K,
L

4:
K,
L

5:
K,
L

6:
E,
F

7:
E,
F

8:
E,
F

3:
J,
I

3:
H
,G

4:
H
,G

5:
H
,G

4:
J,
I

5:
J,
I

3:
D
,C

3:
B,
A

4:
D
,C

5:
D
,C

5:
B,
A

4:
B,
A

6:
J,
I

6:
H
,G

7:
H
,G

7:
J,
I

8:
I,J

8:
G
,H

7:
I,J

7:
G
,H

6:
I,J

6:
G
,H

8:
C
,D

8:
A,
B

7:
C
,D

7:
A,
B

6:
C
,D

6:
A,
B

5:
I,J

5:
G
,H

4:
I,J

4:
G
,H

3:
I,J

3:
G
,H

5:
C
,D

5:
A,
B

4:
C
,D

4:
A,
B

3:
C
,D

3:
A,
B

2:
I,J

0:
I,J

1:
I,J

1:
G
,H

0:
G
,H

2:
G
,H

9:
A,
B

2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

10
:A
,B

11
:A
,B

12
:A
,B

2 3

13
:A
,B

14
:A
,B

15
:A
,B

2 3

16
:A
,B

17
:A
,B

0:
C
,D

0:
C
,D

9:
C
,D

10
:C
,D

11
:C
,D

12
:C
,D

13
:C
,D

14
:C
,D

15
:C
,D

16
:C
,D

9:
E,
F

10
:E
,F

11
:E
,F

12
:E
,F

13
:E
,F

14
:E
,F

15
:E
,F

Stage

0

Stage

1

Stage

2

Stage

0

Stage

1

Stage

2

TP.

sync

TP.

sync

PP.

sync

TP.

sync

TP.

sync

PP.

sync

TP.

sync

TP.

sync

PP.

sync

PP.

sync

PP.

sync

One 12-layer (A-L) model is folded
into 2 segments

a) Megatron's FIFO-based 1F1B Scheduling

b) FOLD3D's AIAO Scheduling

DP.sync(H,G) DP.sync(B,A) DP.sync(H,G)

DP.sync(B,A)

DP.sync

0:E

COMP

0:F

COMP

1:E

COMP

1:F

COMP

2:E

COMP

0:E

COMP

0:F

COMP

1:E

COMP

1:F

COMP

2:E

COMP

2:F

COMP

DP.sync DP.sync DP.sync

TP.

sync

TP.

sync

TP.

sync

TP.

sync

TP.

sync

2:F

COMP

TP.

sync

PP.

sync

3:E

COMP

Fig. 4: Comparison between Megatron’s serialized 1F1B scheduling and FOLD3D’s AIAO scheduling.

of their corresponding forward passes due to activation
checkpointing to save GPU memory in all PP-enabled
training systems’ schedules [22]), the DP.sync tasks (e.g.,
DP.sync(H,G)) of all layers in this segment can immediately
be launched, and the first segment’s computation tasks can
start in parallel. When ns = 1, AIAO essentially becomes
GPipe’s AFAB schedule. When ns = x, the DP.sync tasks
of x − 1 segments can be overlapped with computations,
and only the DP.sync of 1 (the first) segment cannot be
overlapped with other tasks.

Step 3. An ideal case of overlapping DP.sync tasks with
computation is that DP.sync tasks of a segment’s layers are
faster than another segment’s backward pass computation
tasks. For instance, the DP.sync(H,G) finishes no later than
the backward pass of (B,A). In this case, only the first
segment’s DP.sync tasks lie on AIAO’s performance critical
path, because the first segment’s next forward pass should
wait until these DP.sync tasks finish, which is the optimal
case as discussed in §2.2.

However, in a commodity cloud’s network, the finish
time of a segment’s DP.sync tasks (e.g., DP.sync(H,G)) can
be longer than the overlapped backward pass (e.g., the
backward pass of (B,A)). Therefore, FOLD3D truncates the
longer part of the DP.sync tasks and overlaps this part with
a corresponding forward pass (e.g., the forward pass of
(A,B)) in the next iteration (details are in §4). For instance,
in Table 2, for FOLD3D, the time spent in the “DP.sync”
column of all segments mostly overlapped with the time
spent in the “Bwd” column of all (other) segments; for
Megatron, these two columns were serialized in its training
performance critical path.

3.3 Performance Modeling
Critical Path Analysis. In conventional 3D parallel training
systems [8], [16], [19], the execution time (i.e., defined as the

critical path) of one iteration processing a whole data batch
can be divided into computation time T comp, communica-
tion time T comm, and bubble time T bubble. Generally, the
performance model used for evaluating 3D configurations
in Megatron, Alpa and Piper can be unified as:

T comp + T comm + T bubble (1)

FOLD3D overlaps communication with computation,
and the communication time in FOLD3D can be further
divided into overlapping time T comm

ol and non-overlapping
time T comm

nol . The critical path of FOLD3D is thus defined as:

max(T comp, T comm
ol ) + T comm

nol + T bubble (2)

As formulated in recent work [8], [16], the computation
time T comp is orthogonal to the scheduling strategy and
relates only to the given 3D configuration. Therefore, given
the same DNN model and 3D configuration, the T comp of
FOLD3D should perform the same as that of Megatron and
any other 3D parallel training systems.

T bubble is the bubble time in the pipeline, and is calcu-
lated as the sum of startup times of all pipeline stages. The
startup time of a pipeline stage is defined as the sum of
forward and backward times of its first micro-batch.

We denote the pipeline stage number as p. According
to the segment-based scheduling, the bubble in FOLD3D
consists of p− 1 forward passes and p− 1 backward passes
of a segment’s micro-batch. Given the segment number ns
and the micro-batch number ms, T bubble is:

(p− 1) ∗ T comp

ns ∗ms
(3)

Data parallelism can be performed inside a host and
across hosts. Thus, we define intra-host data parallel size
dintra as the number of GPUs in the same data parallel
group on a host and inter-host data parallel size dinter as



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 7

the number of hosts in a data parallel group. Assume w
is the total model parameter size that all GPUs in a host
contain, the data parallel communication time T comm

dp is
2(dinter−1)w

dinterr
, where r is the network bandwidth of a host.

We assume the traditional all-reduce [18] communication
for the DP.sync here. The data parallel communication of
that all ns segments except for the first segment in a stage
can overlap with the computation.

In FOLD3D, a tensor is transmitted in both the forward
and backward passes of a micro-batch. The tensor size
equals the activation size a of a single layer in the model.
Assume there are total bs tensors transmitted in a stage,
the pipeline parallel communication time T comm

pp is bs∗a
dinter∗r .

The pipeline parallel communication between stages can be
transmitted asynchronously. The pipeline parallel commu-
nication of all ms micro-batches except for the first micro-
batch of the first segment in a stage can overlap with the
computation. The overlapping communication T comm

ol is :

ms− 1

ms
T comm
pp +

s− 1

s
T comm
dp − T comp (4)

Thus, the non-overlapping communication time T comm
nol is:

T comm
pp

ms
+

T comm
dp

s
+ T comm

tp (5)

Memory Analysis. The major difference between AIAO
scheduling and FIFO-based scheduling is that an activa-
tion checkpoint on average incurs a longer lifecycle in
AIAO, making the peak working-set memory of FOLD3D
larger than the other FIFO-based 3D training systems. We
take Megatron’s interleaved 1F1B scheduling [8], [16] as
an example. The peak memory consumption for activation
checkpoints of Megatron is:

(p ∗ (ns + 1) − 1) ∗ SizeOf(checkpoints) (6)

The peak memory consumption for activation check-
points of FOLD3D is:

ms ∗ ns ∗ SizeOf(checkpoints) (7)

Overall, the Megatron’s memory consumption for stash-
ing activation checkpoints is only related to the pipeline
stage number p and segment number ns, while FOLD3D’s
total memory consumption for stashing the activation
checkpoints is proportional to the number of micro-batches
(ms), which makes FOLD3D’s memory consumption larger
than Megatron’s in most cases. Nevertheless, FOLD3D’s
offloading mechanism shifts this extra memory burden to
the CPU memory, making FOLD3D incur negligible extra
GPU memory usage (see Table 2).

4 FOLD3D RUNTIME

FOLD3D takes a model’s shape setting and training hy-
perparameter as inputs and trains the model with 3D
parallelism on a GPU cluster. The model shape setting
includes hidden size, number of attention heads, number of
layers, etc. The training hyperparameter contains learning
rate, weight decay, etc. The 3D parallelism setting includes
pipeline parallelism size p, tensor parallelism size t and data
parallelism size d.

FOLD3D automatically determines AIAO’s segment
number for the given model and parallelism setting in
order to reach a high training performance. Specifically, an
ideal segment number should balance the DP.sync (network
bandwidth-hungry) and PP.sync (latency-sensitive) tasks,
and should overlap the communication and computation
tasks as much as possible (§3.2), as shown in Figure 4. If the
number of segments (ns) is larger, FOLD3D can move more
DP.sync tasks off the critical path, and AIAO’s pipeline
bubble ratio can decrease. However, these benefits do not
come for free: increasing the segment number to ns will
invoke ns − 1 more times of PP.sync tasks (Figure 4b).
Although FOLD3D overlaps PP.sync tasks with computation
tasks through asynchronous transfer (§5), the PP.sync tasks
may still block the DP.sync tasks, because both these two
communication tasks contend for the same network. There-
fore, FOLD3D determines a near-optimal segment number
(ns) heuristically. FOLD3D increases ns until the combina-
tion of PP.sync and DP.sync tasks exceed the computation
time being overlapped.

The executor realizes the AIAO scheduling, given the
3D parallelism strategy (p, t, d) and the segment number
ns. Algorithm 1 describes the executor’s logic: it invokes all
sync tasks based on the current injected micro-batch ID and
the current GPU’s segment ID to determine its upcoming
communication and computation tasks’ interleaving. It first
executes all micro-batches’ (in this training iteration) for-
ward passes (line 7) and then executes all micro-batches’
backward passes (line 13). After that, the pipeline flush
(line 4) is performed to synchronize all the gradients along
the DP dimension and update the model parameters. Dur-
ing the computation tasks, the executor assigns the gener-
ated communication tasks to the communicator with each
communicated object reference and its current execution
status.

Algorithm 1: FOLD3D Executor
Input: Training iteration T ; Micro-batch number m;

Segment number ns;
1 for i = 1 to T do
2 for j = 1 to ns do
3 seg ← getSegment(j);

// wait for line 13 in DPComm to
finish

4 seg.flush();
5 for k = 1 to m do

// prepared by recv() in PPComm
6 input← seg.getForwardInput(k);
7 output← seg.runForward(input);

// invoke send() in PPComm
8 seg.setForwardOutput(k, output);

9 for j = ns to 1 do
10 seg ← getSegment(j);
11 for k = 1 to m do

// prepared by recv() in PPComm
12 input← seg.getBackwardInput(k);
13 output← seg.runBackward(input);

// invoke send() in PPComm
14 seg.setBackwardOutput(k, output);

// invoke line 6 in DPComm
15 seg.setBackwardDone();



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 8

Algorithm 2 describes FOLD3D’s communicator logic. It
splits the DP.sync task of each segment into two subsets. The
first subset is launched after it is generated, and this subset
will be overlapped with the upcoming segment’s backward
pass (line 10). The second subset will be overlapped with
the corresponding forward pass computation (line 13). The
scheduling outcome is depicted in Figure 4. FOLD3D com-
municator automatically decides the split ratio of the two
subsets based on the runtime-collected computation time of
backward pass and forward pass tasks correspondingly.

FOLD3D communicator issues pipeline parallel send()
and recv() operations per forward or backward pass (lines
21, 24). At the beginning of each computation task, FOLD3D
communicator issues the recv() operation for the next com-
putation task’s input tensors. The recv() operation should
finish before the next computation task starts. At the end of
each computation task, FOLD3D communicator calls send()
with the output tensors to transfer them to the next pipeline
stage. FOLD3D communicator issues TP.sync tasks during
the forward and backward passes. FOLD3D executor waits
until the TP.sync tasks finish and then continues the compu-
tation.

Algorithm 2: FOLD3D Communicator
Input: Training iteration T ; Micro-batch number m;

Segment number ns; DP.sync split ratio r
1 Procedure DPComm():
2 for i = 1 to T do
3 DPfwd ← ∅;
4 for j = ns to 1 do
5 seg ← getSegment(j);
6 seg.waitBackwardDone();
7 task ← seg.DPSync();
8 taskfwd, taskbwd ← task.split(r);
9 DPfwd.append(taskfwd);

// finish backward DP.sync task
10 taskbwd.launch();

11 for j = 1 to ns do
12 taskfwd ← DPfwd.popLast();

// finish forward DP.sync task
13 taskfwd.launch();

14 Procedure PPComm():
15 for i = 1 to T do
16 for j = 1 to ns do // j = ns to 1 for

backward
17 seg ← getSegment(j);
18 input← recv(1);
19 seg.setInput(1, input);
20 for k = 1 to m− 1 do
21 input← recv(k + 1);
22 seg.setInput(k + 1, input);
23 output← seg.getOutput(k);
24 send(k, output);

25 output← seg.getOutput(m);
26 send(m, output);

Intra-Segment Offloading. The offloader incorporates
both activation checkpointing and cpu offloading. Activa-
tion checkpointing [49] is essential for greatly reducing GPU
memory footprint (i.e., the activation tensors) in existing PP-
enabled training systems by paying extra re-computation

time of GPU ALUs. Activation checkpointing only stashes
output activations (i.e., checkpoints) of selective layers, and
the rest activations are recomputed in the backward pass by
running the forward pass again.

The offloader decides on a proper set of activation
checkpoints, which does not defer the progress of back-
ward pass, but achieves the minimum peak memory
footprint [49]. Compared to Megatron’s 1F1B scheduling,
FOLD3D’s AIAO scheduling inevitably incurs larger GPU
memory (§2.2). This is because AIAO requires all the for-
ward passes of all segments to be finished before any back-
ward pass starts (see Figure 4). The activation size may still
exceed the GPU memory even with activation checkpoint-
ing enabled in FOLD3D. Therefore, the offloader offloads
activation checkpoints to CPU memory, a common trick
adopted from existing systems (e.g., DeepSpeed [19]). All
checkpoints generated by a micro-batch are offloaded dur-
ing the next micro-batch’s forward pass. Then the offloader
pre-fetches the checkpoints of each micro-batch from CPU
memory during the previous micro-batch’s backward pass.
Evaluation shows that FOLD3D’s pre-fecthings/offloadings
were overlapped by computation tasks and caused negligi-
ble training slowdown (Table 4).

Inter-Segment Lazy Communication. For all micro-
batches of segment i (e.g., segment 0 in red in Figure 4b),
the last pipeline stage of this segment (stage 2) has to send
the output tensors (of layer F) to segment i + 1’s first stage
(stage 0). However, the execution of segment i+1 on stage 0
will not start until segment i finishes. If using a naive GPU-
to-GPU direct communication, the stashed output tensors
will cause extra GPU memory consumption (e.g., the output
tensors of micro-batch 0-8 will be stashed in stage 0’s GPUs
in Figure 4b). We shift this part of extra GPU memory to
CPU hosts by FOLD3D’s inter-segment lazy communication
mechanism, in which the output tensors from the last stage’s
GPUs (e.g., stage 2’s GPUs in Figure 4b) will be directly sent
to the remote CPU memory of the first pipeline stage (stage
0), and these tensors on the remote CPU memory will be
lazily loaded into GPU memory when the tensors are used
in related computational tasks.

Overall, these runtime algorithms do not affect the bulk
synchronous training convergence for three reasons. First,
each segment collects the gradients along the DP dimension
through DP.sync tasks (see lines 10, 13 in Algorithm 2) and
each segment has gradients with respect to all samples in
an iteration. Second, FOLD3D ensures that the gradients of
each segment are updated to the model parameters before
the next iteration of this segment begins (see line 4 in Algo-
rithm 1). Third, FOLD3D does not alter tensors transmitted
between GPUs or tensors fed into the model.

5 IMPLEMENTATION

5.1 Preemptive communication scheduling

In FOLD3D’s scheduling, DP.sync tasks are not only over-
lapped with computation but are also overlapped with
PP.sync tasks. Concurrent DP.sync and PP.sync tasks may
contend for network bandwidth, and both tasks slow down.
Although most of the DP.sync and PP.sync tasks are over-
lapped with computation in FOLD3D, the PP.sync tasks dur-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 9

ing the pipeline warmup period still stay in the performance
critical path.

FOLD3D incorporates preemptive communication
scheduling to ensure that the PP.sync time does not increase
when overlapping with DP.sync tasks. Specifically, when a
PP.sync task arrives, FOLD3D pauses the DP.sync tasks in
the same node. For a PP.sync send task, only the DP.sync
tasks currently sending data are stopped. For a PP.sync
receive task, the DP.sync tasks only stop receiving data
when the PP.sync task starts to receive data. When a DP.sync
task stops receiving data, it first saves the data already
received in its buffer, and then sends an interruption signal
to the corresponding sender.

5.2 CPU Offloading

FOLD3D incorporates CPU offloading to mitigate the in-
creased GPU memory burden caused by FOLD3D’s schedul-
ing. The activation tensors are continuously moved from
GPU memory to CPU memory during the forward pass
and moved back to GPU memory in the backward pass.
When transferring data from the CPU memory to GPU, GPU
requires the CPU memory page to be pinned (page-locked).
Otherwise, a temporary pinned page is created and data is
first copied to the pinned page and then transferred to the
GPU. This is because the OS would swap an unpinned page
to the disk if the page is inactive. For efficient data transfer,
FOLD3D preallocates a pinned CPU memory buffer at the
start of training to store the activation tensors. The buffer
size is determined by profiling the total activation tensor
size in an iteration.

We assign an individual CUDA stream for CPU offload-
ing so that the CPU offloading does block the computa-
tion and communication tasks. In the backward pass, the
activations are moved back to the GPU according to the
order they are used. FOLD3D synchronizes the computation
stream with the offloading stream before each activation is
used for recomputation to ensure data correctness.

When sequence parallelism is enabled alongside tensor
parallelism, the activations are partitioned across the tensor
parallel ranks. As a result, each GPU only offloads its own
activation partitions to the CPU memory.

The kernel launch overhead becomes significant when
we invoke a GPU kernel for each activation tensor to be
transferred. FOLD3D introduces a technique named batched
CPU offloading to reduce the kernel launch overhead. Specif-
ically, in the forward pass, a layer’s output tensor saved
as the checkpoint is not moved out of GPU memory im-
mediately after it is used by the next layer. Instead, we
batch multiple activation tensors together and transfer them
between GPU memory and CPU memory in a single kernel.
Tensors are also moved back to GPU in batches. By doing
so, we can achieve higher PCIe utilization and reduce the
CPU offloading time.

6 EVALUATION

Testbeds. We performed the experiments on two clusters.
The first cluster is a public commodity cloud consisting of
8 nodes with in total 64 NVIDIA V100 GPUs. Each node is
an AWS EC2 p3dn.24xlarge instance which has 96 vCPUs,

1.2TB memory and 8 Nvidia Tesla V100 GPUs (each has
32GB memory and 125 FP16 TFLOPs). GPUs in a node
are connected by NVLink, and nodes are connected over a
100Gbps network. The second cluster is a private laboratory
cloud containing 32 nodes with a total of 256 NVIDIA A100
GPUs. Each node has 128 Intel 6248R CPUs, 2.0TB memory
and 8 Nvidia A100 GPUs (each has 40GB memory and 312
FP16 TFLOPs). GPUs in a node are connected by NVLink,
and nodes are connected over 200Gbps Infiniband. Unless
otherwise specified, we used 16 nodes with a total of 128
A100 GPUs as our default testbed.
Baselines. We took Megatron v3.0 (Megatron-SP) [28],
Megatron v2.5 (Megatron-PTD) [8], DeepSpeed 3D
(DSpeed3D) [19], and DeepSpeed ZeRO3 (DSpeedZ3) [29] as
our baselines. Megatron-SP is the latest 3D parallel training
system that was reported to achieve almost linear scaling
efficiency. Megatron-PTD is the system used in Megatron’s
earlier paper [8]. DSpeedZ3 is a powerful data parallel
training system that incorporates a set of memory optimiza-
tion techniques. Microsoft’s DSpeed3D is a well-engineered
system which extends data parallelism optimized by Deep-
Speed ZeRO with tensor parallelism [25] and pipeline par-
allelism [10], [24] to break the scaling efficiency bounds of
data parallelism. We ran these two DeepSpeed systems in
DeepSpeed v0.5.5 environment. Sequence parallelism [28]
was integrated into Megatron, DSpeed3D and FOLD3D to
reduce the activation size and support larger models.
Baseline settings. We used two 3D parallel configurations
for the experiments. The first configuration was chosen fol-
lowing the instructions provided in Megatron-PTD. Specif-
ically, given a DNN model, we first scaled along the tensor
parallel dimension within hosts and then the pipeline paral-
lel dimension until the model’s parameters and activations
can be fit into GPU memory. Then, we scaled along the
data parallel dimension to use up all GPUs. The second
configuration was selected by Piper, which proposed an
efficient optimization algorithm to find the best 3D parallel
configuration for its corresponding 3D parallel performance
modeling. For both Megatron-PTD and Megatron-SP, we
adopted the interleaved schedule introduced in its paper
to reduce the pipeline bubble. The best interleaved sched-
ule was selected by trials and chosen with the highest
throughput produced, as no determined selection instruc-
tion is provided by Megatron. Megatron-PTD/Megatron-SP
can overlap most of the PP.sync tasks with computation
when enabling its interleaved schedule, but the PP.sync
tasks during the pipeline warmup period have to be in
the performance critical path. DSpeed3D has to left all the
PP.sync tasks in the performance critical path since it adopts
the 1F1B scheduling. This is because when overlapping
PP.sync tasks with computation in 1F1B scheduling, two
simultaneous send/recv operations between a pair of GPUs
may potentially cause deadlock [50].
Models and Datasets. We evaluated five giant transformer
models which cover all the large transformer models eval-
uated by recent large model training systems [8]. Specif-
ically, we covered major pretraining transformer models
(GPT [1], BERT [31], CPM [32], Turing-NLG [29] and
T5 [33]) and their respective datasets. GPT and Turing-NLG
use OpenWebText [51] dataset, BERT uses Wikipedia [52]
dataset, CPM uses WuDao Corpus [53] dataset, and T5 uses



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 10

Model #Layers Hid. Size #Heads
GPT-3 14B 32 6144 48
GPT-3 18B 40 6144 48
GPT-3 39B 48 8192 64
GPT-3 81B 64 10240 80

BERT 72 7344 48
T-NLG 80 4256 28
CPM 48 5120 64

T5 24 1024 128

TABLE 1: Different models we used during the evaluation.
Hid. Size stands for the hidden size of a layer.

c4/realnewslike [54] dataset.
Metrics. We measured FOLD3D’s training performance by
per-GPU throughput. The throughput is calculated by the
TFLOPs metric, whose approximation formulas (for trans-
former blocks) are from Megatron [8] for fair comparisons,
and further specifications can be found in their paper.
Model Configurations. Table 1 shows all model settings
used in this paper. Each model’s configuration is the same
as the official specifications or settings evaluated by pre-
vious works. Moreover, to better understand FOLD3D, we
evaluated GPT-3 models with various model shapes and
parameter sizes. We will specify how these settings are
selected when they are used. Without further specifications,
the micro-batch size used in our experiments was 4, which
was large enough to saturate a GPU’s computation while
leaving enough GPU memory space for memory footprints
during training.

We focus on four questions. §6.1: How does FOLD3D
perform compared to the baselines? §6.2: How does
FOLD3D perform with different parallel configurations?
§6.3: How robust is FOLD3D’s high performance under
different batch sizes and network bandwidths? §6.4: How
effective are FOLD3D and its components?

6.1 End-to-End Performance
Table 2 shows five training systems’ per-GPU throughput
when training GPT-3 models on 64 V100 GPUs and 128 A100
GPUs. We present the detailed settings (e.g., model, batch
size and parallel configuration), as well as various break-
down results, in Table 2. Column “ExCMem.” stands for the
extra CPU memory brought by the novel AIAO schedul-
ing of FOLD3D. The extra CPU memory is the peak CPU
memory occupied by the offloaded checkpoint activations
in a host, and excludes the CPU memory used by Python
program and PyTorch library. Column “ExCMem.” is not
applicable to Megatron and DSpeed3D since these systems
only store the activation tensors in GPU memory. Column
“ExCMem.” is not applicable to the pure data parallel train-
ing system DSpeedZ3 because Column “ExCMem.” evalu-
ates the CPU memory usage caused by pipeline parallelism.
Besides the extra CPU memory, we have also evaluated the
total CPU memory usage of all systems, and we report the
results in §6.1. Columns “Bubble” and “PP.sync” are not
applicable to DSpeedZ3 because DSpeedZ3 is a pure data
parallel training system.

All models’ shape configurations used in this evaluation
followed the models’ original papers. To compare with
Megatron-PTD, we evaluated GPT-3 18B, which is the model
Megatron-PTD used in its paper on 256 GPUs. We then used
GPT-3 39B to evaluate FOLD3D’s performance on larger
models, and compared the results with Megatron-SP. We

selected the batch size that achieved the shortest training
time making the model converged. Details of the batch size
selection are elaborated in §6.3.

Overall, FOLD3D achieved the highest throughput (116.1
TFLOPS and 51.1 TFLOPS) on both A100 and V100 clusters;
to the best of our knowledge, this throughput is higher than
the highest per-GPU throughput publicly reported on 64
V100 GPUs with similar models. Specifically, DeepSpeed
reported a publicly highest per-GPU throughput of 41.4
TFLOPS [29] on training the model of the same size, but
with a much faster cross-server link of 800Gbps (Nvidia
DGX-2) than the 100Gbps network in our evaluation.
FOLD3D achieved 31.5%-42.1% speedup over Megatron-SP
on 128 A100 GPUs and 25.2%-33.0% over Megatron-SP on
64 V100 GPUs.

Table 2 reveals FOLD3D’s high performance came from
both the reduced (overlapped) DP.sync and PP.sync com-
munications on the performance critical path. We observed
that the network was saturated by “DP.sync” for all five
training systems. On the training performance critical path
of both Megatron and FOLD3D, both their throughput
mainly depends on the sum of “Fwd.”, “Bwd.”, “DP.sync”,
and “PP.sync”. However, FOLD3D’s “Fwd.” and “Bwd.”
are overlapped with most of the DP.sync and PP.sync tasks
(see Figure 4b). For example, on the V100 cluster, FOLD3D
reduced the DP.sync time on the performance critical (non-
overlapped) path from 2.50s to 0.67s and the PP.sync time
on the performance critical path from 0.95s to 0.41s, respec-
tively.

FOLD3D outperformed the baselines under both the
parallel configurations derived by Megatron-PTD and Piper.
This is because that DP.sync took a large portion of the
iteration time for these parallel configurations. Megatron-
PTD increases PP and TP sizes until the model split can
be fit into GPU memory, and then enlarges DP to use all
GPUs. In such a case, the PP size and TP size are minimized
while the DP size is maximized. Meanwhile, Megatron-PTD
used most of the GPU memory to accommodate the model
parameters and their corresponding gradients. This leads
to the extremely large gradients to be synchronized in each
GPU. The large per-GPU gradient volume and the large DP
size lead to the substantial DP.sync of Megatron-PTD.

Even though Piper automatically finds the best paral-
lel configuration that maximizes the training throughput,
DP.sync still accounted for 28.6% of the training time in
our evaluation. This is because the decrease of DP.sync time
always comes with the increase of PP.sync time and pipeline
bubble time, which inevitably increases the overall iteration
time. In 3D parallel training, the way to mitigate the DP.sync
time is to increase the PP size. By doing so, both the DP
size and the gradients needed to be synchronized per GPU
decrease. However, both the PP.sync time and the pipeline
bubble increase as well.

We have collected both GPU and CPU memory usages
during evaluation. The memory usage (i.e., the sum of
GPU memory and CPU memory usages) of FOLD3D is
larger than the baselines, and the extra memory overhead
comes from the novel AIAO scheduling of FOLD3D. The
AIAO scheduling requires FOLD3D to store the checkpoint
activations generated during the forward pass of all the
micro-batches. Since the checkpoints are further offloaded



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 11

GPUs Model Batch System Conf (3D), (Seg.) Fwd. Bwd. Bubble DP.sync PP.sync GMem. ExCMem. Thrp. Util%

A100
× 128

GPT-3 18B 256

FOLD3D
PTD-P

(8, 2, 8), (4) 634.0 1549.0 79.4 629.1 193.2 27.3 8.3 95.8 32.0%
Megatron-PTD (8, 2, 8) 610.1 1512.4 143.6 2020.0 298.0 26.5 n/a 67.4 21.6%

DSpeed3D (8, 2, 8) 624.9 1559.0 290.1 2034.1 385.7 26.0 n/a 61.9 19.8%
DSpeedZ3 n/a (128, n/a, 1) 3211.8 3790.3 n/a 2365.2 n/a 10.4 n/a 33.0 10.6%

GPT-3 39B 256

FOLD3D
Piper

(4, 4, 8), (4) 1239.7 2984.3 213.5 541.9 382.2 30.7 12.9 116.1 37.2%
Megatron-SP (4, 4, 8) 1152.0 2825.9 439.0 1976.8 732.5 29.8 n/a 88.3 28.3%

DSpeed3D (4, 4, 8) 1186.9 2862.8 803.7 1962.3 1263.8 29.0 n/a 78.3 25.1%
DSpeedZ3 n/a (128, n/a, 1) 6794.2 6820.7 n/a 4387.7 n/a 16.5 n/a 36.1 11.6%

V100
× 64

GPT-3 18B 128

FOLD3D
PTD-P

(4, 2, 8), (4) 1540.0 4102.0 181.6 873.1 108.9 27.1 8.1 43.5 34.8%
Megatron-PTD (4, 2, 8) 1475.1 3919.5 318.2 3235.6 307.8 26.3 n/a 32.7 26.2%

DSpeed3D (4, 2, 8) 1560.1 3955.6 693.4 3211.0 503.0 25.8 n/a 30.2 24.2%
DSpeedZ3 n/a (64, n/a, 1) 5173.6 5420.1 n/a 3786.1 n/a 10.1 n/a 21.6 17.3%

GPT-3 39B 128

FOLD3D
Piper

(2, 4, 8), (4) 2920.6 7928.3 508.5 670.2 413.2 30.5 12.9 51.6 41.3%
Megatron-SP (2, 4, 8) 2865.3 7836.9 1159.7 2505.0 951.7 29.4 n/a 41.2 32.9%

DSpeed3D (2, 4, 8) 2828.3 7852.8 2012.5 2456.5 1681.1 28.7 n/a 38.3 30.6%
DSpeedZ3 n/a (64, n/a, 1) 9517.7 9913.8 n/a 7142.3 n/a 16.3 n/a 24.7 19.8%

TABLE 2: Breakdown of performance critical path for each system training GPT-3. Tuples in (3D), (Seg.) column stands
for (DP, PP, TP), (segment numbers); Fwd. stands for forward computing time, Bwd. stands for backward computing time.
Thrp. stands for per-GPU throughput in TFLOPs and Util% stands for ratio of the measured throughput to the theoretical
peak throughput provided by Nvidia. GMem. stands for the peak GPU memory usage (in GB) of a GPU. ExCMem. stands
for the extra CPU memory brought by the novel AIAO scheduling of FOLD3D and represents the peak CPU memory (in
GB) occupied by the offloaded checkpoint activations in a host. Both PP.sync and DP.sync contain only non-overlapped
communication time. n/a means the column is not applicable to the system as explained in S6.1.

GPUs Model Batch System Conf (3D), (Seg.) Fwd. Bwd. Bubble DP.sync PP.sync GMem. ExCMem. Thrp. Util%

A100
× 128

BERT 256

FOLD3D
Piper

(4, 4, 8), (4) 1987.8 5327.0 413.7 670.5 329.8 39.1 17.3 98.1 31.4%
Megatron-SP (4, 4, 8) 1849.4 5242.1 809.8 2284.8 572.5 38.4 n/a 77.8 24.9%

DSpeed3D (4, 4, 8) 1870.7 5378.1 1526.8 2356.3 976.4 37.5 n/a 71.2 22.8%
DSpeedZ3 n/a (128, n/a, 1) 7615.7 7746.2 n/a 5126.5 n/a 11.3 n/a 51.0 16.3%

T-NLG 256

FOLD3D
Piper

(8, 2, 8), (4) 1221.0 3574.7 162.7 545.9 227.9 25.7 11.2 96.9 30.4%
Megatron-SP (8, 2, 8) 1225.4 3481.3 318.5 1995.3 452.0 24.9 n/a 72.9 23.4%

DSpeed3D (8, 2, 8) 1203.1 3489.7 616.6 2054.8 640.4 23.9 n/a 68.4 21.9%
DSpeedZ3 n/a (128, n/a, 1) 3783.8 3817.2 n/a 2315.1 n/a 8.5 n/a 59.1 18.9%

CPM 256

FOLD3D
Piper

(4, 4, 8), (4) 776.7 2021.5 147.7 291.8 161.4 24.5 8.1 91.0 29.1%
Megatron-SP (4, 4, 8) 723.4 1986.1 261.8 1084.2 280.9 23.8 n/a 70.9 22.7%

DSpeed3D (4, 4, 8) 736.1 1967.4 538.7 1056.3 504.6 22.4 n/a 64.1 20.5%
DSpeedZ3 n/a (128, n/a, 1) 4789.2 4543.1 n/a 2589.0 n/a 6.4 n/a 45.9 14.7%

T5 256

FOLD3D
Piper

(16, 2, 4), (3) 1735.2 4686.0 552.1 867.6 343.1 35.8 14.2 93.7 30.0%
Megatron-SP (16, 2, 4) 1649.1 4555.3 898.2 2270.2 768.1 34.7 n/a 74.9 24.0%

DSpeed3D (16, 2, 4) 1757.0 4540.6 1648.2 2246.0 1142.6 33.7 n/a 69.8 22.4%
DSpeedZ3 n/a (128, n/a, 1) 4716.1 4653.8 n/a 3068.3 n/a 14.1 n/a 64.2 20.6%

TABLE 3: Breakdown of performance critical path for each system training five models. Column name meanings are the
same as Table 2. n/a means the column is not applicable to the system.

to CPU memory by FOLD3D’s offloader, the extra memory
used by FOLD3D resides in CPU memory instead of GPU
memory. We evaluated extra CPU memory, which is defined
as the CPU memory occupied by offloaded checkpoint
activations, specifically for FOLD3D. Table 2 shows the GPU
memory usages of all systems and the extra CPU memory
usage of FOLD3D. The GPU memory used by FOLD3D
is comparable to the GPU memory used by Megatron-SP,
Megatron-PTD and DSpeed3D. The GPU memory usage of
FOLD3D validates the effectiveness of FOLD3D’s offloader.
When excluding the extra CPU memory used by FOLD3D’s
offloader, the CPU memory for Python training scripts,
dataset loaders, and PyTorch runtime used by FOLD3D
also equals that used by Megatron-SP, Megatron-PTD and
DSpeed3D. For instance, for the setting that trains a GPT-3
39B model on 128 A100 GPUs in Table 2, when excluding
the 12.9GB CPU memory used by FOLD3D’s offloader, the
remaining CPU memory usage of FOLD3D is 203.4GB, and
the total CPU memory usages of Megatron-SP, Megatron-
PTD and DSpeed3D are 202.9GB, 200.2GB and 201.7GB.

DSpeedZ3 consumed the smallest GPU memory because
it partitions the model parameters, gradients and optimizer
states across the data parallel GPUs. Gradient partition com-

bined with parameter partition also makes DSpeedZ3 able
to use a scatter-reduce operation for gradient synchroniza-
tion instead of an all-reduce operation. The DP.sync time is
reduced by half compared to the data parallel approach us-
ing all-reduce for gradient synchronization. The drawback
of DSpeedZ3 is that each GPU has to collect parameters
from the other GPUs during both the forward and back-
ward passes. Although DSpeedZ3 overlaps the parameter
collection with computation, the parameter collection time
is larger than the computation time and dominates the
forward and backward passes in our evaluation.

0 1000 2000 3000 4000 5000 6000 7000
Per-iteration time (ms)

GPT-3
18B

GPT-3
39B

Megatron
Fold3D

Comp
Bubble

PP.sync
DP.sync

Fig. 5: Breakdown comparison between Megatron-PTD and
FOLD3D. The iteration time reduced by FOLD3D matches
the performance modeling in §3.3.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 12

We further draw the breakdown results of FOLD3D and
Megatron-SP for GPT-3 18B and GPT-3 39B in Figure 5.
The results generally matched our performance modeling
in § 3.3. For the two models, the DP.sync time of FOLD3D
was reduced by 68.9% and 72.6% compared to Megatron-
SP. In our performance modeling, the DP.sync time will
be reduced by 75% when the segment number is 4. We
attribute this discrepancy to the fact that not all GPUs start
the DP.sync tasks at exactly the same time. The computation
time of FOLD3D is also slightly larger than Megatron-SP for
both models. We attribute the slowdown to the overlapping
of DP.sync task with computation. As revealed by a recent
study [55], when overlapping the all-reduce operation in
DP.sync with DNN computation, the all-reduce operation
contends for GPU resources with DNN computation. How-
ever, these facts only cause the real iteration time less than
5% larger than the performance modeling in our evaluation,
and performance modeling is useful to estimate the real
performance of FOLD3D.

In Table 3, we show four systems’ per-GPU throughput
for another four models. We only demonstrate the results for
each model under the Piper setting. FOLD3D achieved 1.25x
to 1.33x speedup over Megatron-SP, which further confirms
that FOLD3D’s gain holds for different models. The four
models only differ from GPT-3 models in the pre-process
and post-process layers. Same as GPT-3 models, majority
of the four models are composed of Transform blocks. The
models mainly differ in the hidden sizes of the transformer
blocks. The hidden size determines the ratio between com-
putation, DP.sync and PP.sync. We further show the results
for each model on 64 V100 GPUs in Figure 6.

We conducted a weak scaling study to evaluate
FOLD3D’s performance on large-scale clusters. In particu-
lar, following the common practice of baselines [8], weak
scaling is to test a system’s throughput on scaling to train
a larger model with more GPUs. Figure 7 shows that
FOLD3D’s throughput was consistently ∼31% higher than
both Megatron-SP and DSpeedZ3. FOLD3D still consistently
outperformed baselines in all the scales we evaluated. The
reason is when the model size and the number of GPUs
grow, both computation and communication time increase
accordingly. We believe FOLD3D will be able to overlap
most of the communication tasks with the computation
tasks even in larger scales, e.g., 512 or thousands of GPUs;
in contrast, baselines again left all tasks being serialized on
the performance critical path.

GPT BERT T-NLG CPM T5
0

20

40

60

Th
ro

ug
hp

ut
pe

r G
PU

 (T
FL

OP
s)

Fold3D
Megatron

DSpeed3D
DSpeedZ3

Fig. 6: Per-GPU throughput of different models on 64 V100
GPUs.

In sum, through the end-to-end experiments, FOLD3D
was both high-performance and scalable. FOLD3D was re-

64 128 256
GPU Number

0

5

10

15

20

25

Ag
gr

eg
at

ed
 th

ro
ug

hp
ut

of
 a

ll 
GP

Us
 (P

FL
OP

s) Fold3D
Megatron

DSpeed3D
DSpeedZ3

Fig. 7: Weak Scaling of FOLD3D on different amounts of
GPUs. FOLD3D consistently achieves higher TFLOPs per
GPU under various GPU numbers. We used GPT-3 18B, GP-
3 39B, GPT-3 81B for each amount of GPUs.

ported with speedups over baselines on various commodity
cloud settings and various parallel configurations.

6.2 Evaluation of Parallel Configurations
In this section, we evaluated the performance of FOLD3D on
different parallel configurations. In particular, we fixed the
size of one parallel dimension and changed the combination
of the other two. We conducted the experiments for model
GPT-3 39B on both 64 V100 GPUs and 128 A100 GPUs. For
each cluster, the batch size used is the same as the one in
Table 2.

6.2.1 PP v.s. DP
In Figure 8, we evaluated the impact of PP and DP sizes
on FOLD3D’s performance. We set the TP size to 8 (the
number of GPUs in a host), which is a common setting for
large model training (see Table 3). The Megatron paper’s
lesson on these two degrees of parallelism is that DP should
always be more favorable than PP on their 1.6 Tbps network.
However, we found DP and PP should be balanced to reach
the peak throughput in our evaluation. This is because a
large PP size will incur longer PP.sync time and longer
bubble time, while a large DP size will increase the DP.sync
time (even when most of the DP.sync is overlapped with
computation in FOLD3D).

(16, 1)(8, 2) (4, 4) (2, 8)(1, 16)
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
pe

r G
PU

 (T
FL

OP
s)

(a) 128 A100 GPUs

(8, 1) (4, 2) (2, 4) (1, 8)
0

10

20

30

40

50

60

(b) 64 V100 GPUs

Fig. 8: Throughput per GPU under different (PP size, DP
size) combinations. DP and PP should be balanced to reach
the peak throughput.

6.2.2 PP v.s. TP
In Figure 9, we evaluated the impact of PP and TP sizes on
FOLD3D’s performance. We set the DP size to 2 for 64 V100
GPUs and to 4 for 128 A100 GPUs. Overall, our evaluation
shows that within a host (TP size less than or equal to 8),
on both the V100 GPU cluster and the A100 GPU cluster,
TP is more preferred than PP. This is because within a host,



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 13

the GPU-to-GPU links are fast enough so that the scaling
efficiency of TP (mainly bounded by TP.sync communica-
tions) can surpass the efficiency of PP (mainly bounded by
flush bubbles). TP size greater than 8 means cross-server TP
(because there are 8 GPUs in a node), which is much slower
than TP within a server. The same conclusion is reported in
Megatron [8].

(16, 2) (8, 4) (4, 8) (2, 16)
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
pe

r G
PU

 (T
FL

OP
s)

(a) 128 A100 GPUs

(16, 2) (8, 4) (4, 8) (2, 16)
0

10

20

30

40

50

60

(b) 64 V100 GPUs

Fig. 9: Throughput per GPU of FOLD3D under different (PP
size, TP size) combinations. TP is more preferred than PP
within a host.

6.2.3 DP v.s. TP
In Figure 10, we evaluated the impact of DP and TP sizes on
the training throughput of FOLD3D. We set the PP size to 4.
The figure shows that within both V100 and A100 clusters,
TP is more preferred than DP. This is because the TP.sync
time was faster than the DP.sync time. When a model’s size
increases (e.g., increasing the number of DNN layers), the
DP.sync time increases faster than the TP.sync time, and TP
would still be more preferred.

(16, 2) (8, 4) (4, 8) (2, 16)
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
pe

r G
PU

 (T
FL

OP
s)

(a) 128 A100 GPUs

(16, 2) (8, 4) (4, 8) (2, 16)
0

10

20

30

40

50

60

(b) 64 V100 GPUs

Fig. 10: Throughput per GPU under different (DP size, TP
size) combinations. TP is more preferred than DP within a
host.

6.2.4 Impact of Segments
We evaluated the impact of segment number selection on
FOLD3D’s performance for models GPT-3 39B and GPT-
3 14B. For both models, we used the 3D parallel config-
urations derived by Piper. Since DP and PP should be
both preferred and balanced on commodity cloud networks,
selecting a proper segment number in FOLD3D is crucial.
Although an extremely large segment number will bring
a larger overlapping ratio of DP.sync communication tasks
with computation tasks (§4), it will also increase the PP.sync
costs, as each segment needs to be pipelined across all
pipeline stages. We found that in most of our experiments,
the best segment number was 2 to 4 for various models,
which matched the conclusions we drew from §4, as seg-
ment number in this range retains speedup from a highly
overlapped portion of communication tasks (50-75%) with-
out incurring too much PP.sync cost.

1 2 3 4 6
Number of segments

0

25

50

75

100

125

Th
ro

ug
hp

ut
pe

r G
PU

 (T
FL

OP
s)

GPT-3 39B GPT-3 14B

Fig. 11: How the number of segments affects the final
throughput. Given a model and its 3D parallelization con-
figuration, FOLD3D’s runtime is able to find the optimal
segment.

6.3 Ablation Study

0 5 10 15
Epoch

4

6

8

10

Tr
ai

ni
ng

 lo
ss

BS 256
BS 1024
BS 2048

(a) BS means batch size. Model converges slower when
using larger batch sizes.

Fold3D Megatron DSpeed3D DSpeedZ3

256 512 1024 2048
Batch size

0

50

100

150

Th
ro

ug
hp

ut
pe

r G
PU

 (T
FL

OP
s)

(b) FOLD3D achieved larger im-
provement over baselines under
smaller batch size.

256 512 1024 2048
Batch size

0

5

10

15

20

25

Tr
ai

ni
ng

 ti
m

e 
(h

ou
rs

)

(c) 3D parallel training systems
had the shortest training time
under the smallest batch size.

Fig. 12: (a) Training loss curves under different batch sizes.
(b) Throughput per GPU under different batch sizes. (c)
Training time required for the training loss to reach 3.3 (the
minimum training loss achieved by the model).

The selection of batch size when training large models
involves the trade-off between system training throughput
and convergence efficiency [56]. When enlarging the batch
size, GPUs can achieve higher ALU utilization, but the
convergence efficiency becomes lower due to the decrease
of gradient noise scale [57]. To demonstrate the relation-
ship between the convergence efficiency and batch size, we
trained GPT-3 39B model under different batch sizes. For
each batch size we evaluated, we selected the best learning
rate and other hyperparameters following approaches from
existing works [1]. Figure 12a plots the training loss curves
under different batch sizes. When increasing the batch size,
the model has to be trained with more epochs although the
training throughout increases. Thus, the higher through-
put brought by a larger batch size does not necessarily
shorten training time. The result of the relationship between



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 14

convergence efficiency and batch size also matches recent
study [58].

We first evaluated the performance of FOLD3D and
baselines under different batch sizes. The result is shown
in Figure 12b. When increasing the batch size from 256 to
1024, FOLD3D’s throughput improvement over Megatron
decreased from 31.5% to 10.7%, and improvement over
DSpeedZ3 decreased from 48.2% to 27.2%. This is because
the computation time and the overall iteration time increase
with the batch size, while the DP.sync time is orthogonal
to the batch size and stays roughly the same across various
batch sizes. The ratio of the DP.sync time thus decreased and
so did FOLD3D’s improvement. Although the improvement
of FOLD3D over the baselines decreased when enlarging
the batch size, we found that the relatively smaller batch
size (256) achieved the shortest training time for the model
to attain the desired training loss even for Megatron and
DSpeedZ3. Figure 12c shows the total training time used for
the training loss to achieve 3.3 (the minimum training loss
that can be achieved by the given GPT-3 model) under each
batch size for all systems.

Our evaluation on AWS cloud shows that the network
bandwidth for a single node ranges from 70 to 80 Gbps. We
thus evaluated the throughput of FOLD3D and baselines
under 25, 40, 100 and 200 Gbps networks on 128 A100
GPUs. Similar to the approach stated above, we chose
the best batch size for these systems under each network
bandwidth. The best batch sizes for 25, 40, 100 and 200
Gbps networks are 1024, 1024, 512 and 256 respectively.
With the decrease of bandwidth, batch size has to be en-
larged to achieve higher system throughput and shorten
the overall training time. The result is shown in Figure 13.
FOLD3D outperformed Megatron-SP by 30.4% to 36.7%, and
outperformed DSpeed3D by 38.2% to 45.6%. This is because
the ratio of DP.sync to the computation time stayed in the
range between 22.3% to 29.6% under all the bandwidths we
evaluated. The bandwidth decrement came with batch size
enlargement, and thus led to both longer computation time
and DP.sync time.

25 40 100 200
Bandwidth (Gbps)

0

50

100

150

Th
ro

ug
hp

ut
pe

r G
PU

 (T
FL

OP
s) Fold3D

Megatron
DSpeed3D
DSpeedZ3

Fig. 13: Throughput under different network bandwidths.

6.4 Effectiveness Analysis
Activation Checkpointing. The activation checkpointing
technique [49] in both FOLD3D and Megatron was necessary
for conducting all our experiments, because all the base-
line systems were with activation checkpointing to support
training of large models. We tried to disable activation
checkpoiting in our experiments, and all default configu-
rations went to out-of-memory exceptions, indicating that
activation checkpointing was necessary.
Checkpoint CPU Offloading. The data transfer rate be-
tween the accelerator and the CPU memory, which is

Model Mi. batch Hid Acti. Size Fwd. Bwd. O/F.
BERT 4 7344 56.6M 4081.2 11271.7 2343.8

GPT-3 39B 4 8192 64.0M 2901.7 7902.3 1472.5
CPM 4 5120 40.0M 1673.2 4707.9 1097.3

TABLE 4: Cost of CPU activation offloading in different
models and runtime configurations. Mi. batch stands for
micro-batch size and O/F. stands for time cost of offloading
opeartions.

bounded by the PCIe bandwidth, always grows propor-
tionally to the accelerator’s throughput. In our test environ-
ments, the total GPU-to-CPU data transfer rate is 29.6GB/s
for 8 A100 GPUs and 13.6GB/s for 8 V100 GPUs, while A100
GPU’s peak throughput is 312TFLOPs and V100 GPU’s peak
throughput is 125TFLOPs.

We evaluated the effectiveness of our CPU Offloading of
activation checkpoints (§4). Table 4 shows the microevents
when training three models on the V100 setting. In particu-
lar, given the micro-batch size and hidden size, we collected
the activation checkpoint offloading/prefetching time and
collected the forward and backward pass time between two
activation checkpoints. Overall, the total time of offloading
checkpoints to CPUs and fetching them from CPUs was
lower than the forward and backward pass time between
two activation checkpoints in FOLD3D. Therefore, the ac-
tivation checkpoint offloading costs were overlapped with
computation and caused negligible impact on FOLD3D’s
performance.

In the evaluation, we already evaluated both typical
large batch size (i.e., 2048) and small batch size (i.e., 256)
as shown in Figure 12b. On the level of principle, both
the activation checkpoint size and the number of FLOPs
per iteration in FOLD3D are proportional to the batch size.
Overall, both our and common practices [29] match the
principle. In particular, the ratio between the computation
time and the checkpoint offloading time remains roughly
the same for all the batch sizes we evaluated. Therefore, the
checkpoint offloading time remains smaller than the compu-
tation time under various batch sizes; FOLD3D’s offloader
causes negligible performance penalty.
Training Convergence. FOLD3D is designed to maintain the
same training convergence with the baselines and to remain
transparent (§3) to the training workload. Still, in Figure 14,
to verify the training convergence of FOLD3D, we trained
GPT-3 39B using both FOLD3D and Megatron-SP on 128
A100 GPUs. We kept the same training parameters (learning
rate, batch size, and random seeds) for both systems. The
results show that FOLD3D achieved the same convergence
curve with Megatron, although FOLD3D achieved an obvi-
ously better loss reduction, because FOLD3D finishes each
training iteration faster.

6.5 Lessons Learned

FOLD3D has two limitations. First, same as Megatron [8],
[28], our system is mainly designed for large DNN models
with a repeated, stacked structure. Nevertheless, compared
to baselines’ papers (with one or two large models eval-
uated), we have evaluated all the five notable and typ-
ical large models with repeated blocks. FOLD3D and all
existing 3D parallel training systems (Megatron [8], [28]
and DSpeed3D [19]) are currently not designed to support



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 15

0 300 600 900 1200
GPU hour

6

8

10
Tr

ai
ni

ng
 lo

ss
Fold3D
Megatron

(a) Reaching the same training
loss 5.0, Fold3D takes 23.7% less
time than Megatron (training
time reduced by FOLD3D over-
all matched its throughput im-
porvement in Table 2).

0 5 10 15
Training epoch

4

6

8

10

Tr
ai

ni
ng

 lo
ss

Fold3D
Megatron

(b) FOLD3D kept the same
logical convergence efficiency
with Megatron. The grey curve
consists of the blue curve of
FOLD3D and the yellow curve
of Megatron.

Fig. 14: Training loss curve of GPT-3 39B using Fold3D and
Megatron on 128 A100 GPUs over (a) physical time and (b)
logical training steps.

DNN models with heterogeneous layers (i.e., layers which
do not have the same structure or input tensor shape). For
instance, all 3D parallel systems including FOLD3D are not
suitable for ResNet models, because the layers in a ResNet
model differ in structures and input tensor shapes. A typical
ResNet model reduces the input tensor shape and increases
the number of convolution filters layer by layer. FOLD3D is
not suitable for DNNs with heterogeneous layers due to two
reasons. The first reason, which also applies to Megatron
and DSpeed3D, is that the heterogeneity easily leads to un-
balanced computation across pipeline stages. When splitting
models like ResNet to pipeline stages, the last stage with a
linear layer will have extremely heavyweight computation
compared to other stages. The unbalance makes 3D paral-
lelism fundamentally unsuitable for DNNs with heteroge-
neous layers. Researchers may need to use the other two
parallel dimensions or invent a new parallel dimension to
replace the pipeline parallel dimension. We leave this open
problem for future work. The second reason specifically for
FOLD3D is that the segment slicing of FOLD3D requires the
segments to be homogeneous so that a segment’s compu-
tational and communicational tasks can align with those of
other segments to maximize FOLD3D’s effectiveness. The
second limitation is that the CPU offloading mechanism in
FOLD3D can consume extra CPU memory than Megatron.
Fortunately, on commodity clouds, compared with GPU
memory, CPU memory is cheap and extensible.

We believe FOLD3D and Megatron are complementary
to each other. Megatron is optimized for training on dedi-
cated ultra network clusters [59]. On such dedicated clus-
ters, we envision that FOLD3D’s gain over Megatron will
decrease, because these clusters’ Tbps network seems not
to be a bottleneck. After all, FOLD3D is designed for high-
performance training of large models on commodity clouds
for a wide range of users, labs, and enterprises (who do not
have access to these dedicated clusters). FOLD3D’s much-
improved throughput on commodity clouds (on many
GPUs and sub-100Gbps networks) has shown its value on
saving these folks’ massive financial resources and natural
energy. Moreover, the available network on commodity
clouds is often not as large as claimed by the cloud provider.
When we ran our experiments on V100-100G in a dedicated,
quiet AWS cluster, by network monitoring, we found that

the peak network bandwidth for each AWS tenant (us) could
be only 70 to 80Gbps (see §6.3), making FOLD3D especially
desirable.

7 RELATED WORK

There are tremendous systems that study the parallel tech-
niques for DNN training, along data parallelism [19], [29],
[60], [61], [62], pipeline parallelism [10], [11], [13], [20], [21],
[22], [43], [63], [64], and tensor parallelism [25], [65], [66],
[67], until the emergence of 3D parallel training systems [8],
[9], [17]. Based on the above three foundational dimensions,
there are various emerging parallelism techniques including
optimizer parallelism (e.g., DeepSpeed Zero [29]), token
parallelism (e.g., TeraPipe [64]), sequence parallelism [28],
etc. All these various techniques are complementary to 3D
parallelism with each targeting at extreme cases of large
DNN training (e.g., token parallelism is for extremely long
sequence training). In this paper, we focus on optimizing
the 3D parallel dimensions, which serve as the foundation
for today’s large DNNs to scale efficiently to billions of
parameters.

Systems for data parallel training. Data parallelism [19],
[29], [60], [61], [62], [68] is widely adopted for distributed
DNN training. Some data parallel training systems like
P3 [69] and TicTac [40] adopt priority scheduling in data
parallel training to overlap the data parallel communication
with both forward and backward computation. Gradients of
front layers are scheduled ahead of rear layers to maximize
overlapping. BytePS [70] unifies all-reduce and parame-
ter servers to utilize heterogeneous resources in a cluster.
ZeRO [29] reduces the memory usage of data parallelism
by sharding model parameters and gradients across GPUs.
Compared with P3 and TicTac which only work for pure
data parallel training, Fold3D further tackles the challenges
to overlap communication with computation in 3D parallel
training, which are non-trivial as we discussed in §1. Fold3D
can incorporate techniques like BytePS.

Systems for pipeline parallel training. Pipeline paral-
lelism [10], [11], [13], [20], [21], [22], [43], [63], [64], [71], [72],
[73], [74] is commonly used for training large DNN models.
TeraPipe [64] performs fine-grained pipeline parallelism
across tokens in a single training sequence for Transformer-
based models. vPipe [22] balances the memory usage and
computation across pipeline stages. HetPipe [10] supports
training on a set of heterogeneous GPUs with pipeline
parallelism. These optimizations sorely in the pipeline par-
allelism dimension are orthogonal to Fold3D. When combin-
ing existing pipeline parallel systems with data parallelism,
none of them can overlap data parallel communication with
computation, and the data parallel communication of these
systems is serialized after pipeline parallel computation.

Automatic partitioning. FlexFlow [75], Placeto [76], RE-
GAL [77], Alpa [17] and Piper [16] automatically partition
a model over multiple devices through transforming the
parallelization optimization problem into a cost minimiza-
tion problem. Among these works, Piper efficiently finds a
near-optimal strategy for 3D parallelization combined with
memory-saving techniques. However, these works focus
on finding an optimal parallelization configuration, while
Fold3D proposes a new 3D parallel scheduling. Note that



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 16

both FOLD3D and Megatron used the 3D configuration
strategy produced by Piper (§6). We believe FOLD3D and
Piper are orthogonal.

OOO [21] proposes a new training task splitting
paradigm that splits the gradient computations of output
and weights in the backward propagation, so that a smaller
bubble size during pipelining can be achieved. However,
OOO achieves this at a cost of larger memory overhead
because it requires a longer duration of all layers’ gradient
outputs (ΣO) stashing in the GPU memory. OOO is not de-
signed for 3D parallelism, because when OOO is combined
with TP, the ΣO will be explosive as each layer’s gradient
output is gathered from all GPUs of the TP dimension.
OOO has to keep this heavy ΣO in GPU memory until
all tasks of a layer’s backward pass finish. Therefore, OOO
is orthogonal to all 3D parallel training systems including
FOLD3D.

There are also various pioneer works that target at new
training paradigms based on Transformer-like models, in-
troducing sparsely activated DNN training. Pathways [78]
is a recent Multi Program Multiple Data (MPMD) training
framework (proposed by Google) that runs multiple train-
ing tasks/programs (i.e., each task/program is a single SGD
procedure; tasks may share parameters with each other)
to fully exploit a cluster’s heterogeneous GPU resources.
Still, Pathways is complementary to Single Program Mul-
tiple Data systems including Megatron, DeepSpeed, and
FOLD3D, because within each training task (program), the
3D parallelism technique is still essential for scaling to a
large number of GPUs/TPUs with heterogeneous inter-links
between devices.

Besides, Mixture-of-Expert [34], [67] extends Trans-
former models with many sparsely activated experts. Many
emerging training systems such as FasterMoE [35] and
Tutel [79] to accelerate MoE workloads. These systems are
orthogonal to FOLD3D. We believe our AIAO scheduling
has potentials to benefit MoE models, as the MoE training
paradigms also requires the DP, PP, and TP parallel dimen-
sions [17]. Certainly, new challenges will be encountered as
MoE models introduced many asymmetric, sparsely acti-
vated computational tasks to the traditional DNN training,
bring complexities to find the optimal 3D parallel schedul-
ing. We leave this in future work.

8 CONCLUSION

We present the FOLD3D system, which maximally overlaps
communication and computation tasks in 3D parallel train-
ing of large DNN models on commodity clouds. By folding
a model into segments, FOLD3D conducts AIAO to achieve
the an all-parallel scheduling between communication and
computation tasks. FOLD3D can benefit most people who
demand training and fine-tuning large DNN models.

ACKNOWLEDGMENTS

We thank all reviewers for their valuable comments. The
work is supported in part by the Huawei Flagship Research
Grant in 2021, the HKU-SCF FinTech Academy R&D Fund-
ing Scheme in 2021 and 2022, HK RIF (R7030-22), HK ITF
(GHP/169/20SZ), and the Pujiang Lab (Heming Cui is a
courtesy researcher in this lab).

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell
et al., “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[2] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for lan-
guage understanding,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlche Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/
2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

[3] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, R. Wang,
J. Gao, M. Zhou, and H.-W. Hon, “Unified language
model pre-training for natural language understanding and
generation,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. deBuc, E. Fox,
and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf

[4] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy,
D. Downey, and N. A. Smith, “Don’t stop pretraining: Adapt
language models to domains and tasks,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics.
Online: Association for Computational Linguistics, Jul. 2020, pp.
8342–8360. [Online]. Available: https://aclanthology.org/2020.
acl-main.740

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=YicbFdNTTy

[6] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” arXiv preprint arXiv:2103.14030, 2021.

[7] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and
M. Shah, “Transformers in vision: A survey,” arXiv preprint
arXiv:2101.01169, 2021.

[8] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer,
B. Catanzaro, A. Phanishayee, and M. Zaharia, “Efficient
large-scale language model training on gpu clusters using
megatron-lm,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis,
ser. SC ’21. New York, NY, USA: Association for Computing
Machinery, 2021. [Online]. Available: https://doi.org/10.1145/
3458817.3476209

[9] “microsoft/deepspeed,” https://github.com/microsoft/
DeepSpeed.

[10] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. De-
vanur, G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream:
generalized pipeline parallelism for dnn training,” in Proceedings
of the 27th ACM Symposium on Operating Systems Principles, 2019,
pp. 1–15.

[11] B. Yang, J. Zhang, J. Li, C. Ré, C. Aberger, and C. De Sa, “Pipemare:
Asynchronous pipeline parallel dnn training,” Proceedings of Ma-
chine Learning and Systems, vol. 3, 2021.

[12] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li, “Parallelized
stochastic gradient descent.” in NIPS, vol. 4, no. 1. Citeseer, 2010,
p. 4.

[13] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu,
G. Long, J. Yang, L. Xia et al., “Dapple: a pipelined data parallel
approach for training large models,” in Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2021, pp. 431–445.

[14] “Nvlink,” https://www.nvidia.com/en-us/data-center/nvlink/.
[15] “Infiniband and remote dma (rdma) interfaces,” https://www.

kernel.org/doc/html/v5.11/driver-api/infiniband.html.
[16] J. M. Tarnawski, D. Narayanan, and A. Phanishayee, “Piper:

Multidimensional planner for dnn parallelization,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[17] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang, Y. Wang,
Y. Xu, D. Zhuo, J. E. Gonzalez et al., “Alpa: Automating inter-and
intra-operator parallelism for distributed deep learning,” arXiv
preprint arXiv:2201.12023, 2022.

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/2020.acl-main.740
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.kernel.org/doc/html/v5.11/driver-api/infiniband.html
https://www.kernel.org/doc/html/v5.11/driver-api/infiniband.html


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 17

[18] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algo-
rithms for clusters of workstations,” Journal of Parallel and Dis-
tributed Computing, vol. 69, no. 2, pp. 117–124, 2009.

[19] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed:
System optimizations enable training deep learning models with
over 100 billion parameters,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 3505–3506.

[20] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-efficient pipeline-parallel dnn training,” in International
Conference on Machine Learning. PMLR, 2021, pp. 7937–7947.

[21] H. Oh, J. Lee, H. Kim, and J. Seo, “Out-of-order backprop: an
effective scheduling technique for deep learning,” in Proceedings of
the Seventeenth European Conference on Computer Systems, 2022, pp.
435–452.

[22] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen,
H. Lee, J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training
of giant neural networks using pipeline parallelism,” arXiv preprint
arXiv:1811.06965, 2018.

[23] M. Zhu, Y. Zhuo, C. Wang, W. Chen, and Y. Xie, “Perfor-
mance evaluation and optimization of hbm-enabled gpu for data-
intensive applications,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 26, no. 5, pp. 831–840, 2018.

[24] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant
neural networks using pipeline parallelism,” Advances in neural
information processing systems, vol. 32, pp. 103–112, 2019.

[25] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro, “Megatron-lm: Training multi-billion
parameter language models using model parallelism,”
CoRR, vol. abs/1909.08053, 2019. [Online]. Available:
http://arxiv.org/abs/1909.08053

[26] “Nvidia/megatron-lm,” https://github.com/NVIDIA/
Megatron-LM/tree/main/megatron.

[27] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang,
M. Zhang, D. Li, and Y. He, “ZeRO-Offload: Democratizing
Billion-Scale model training,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21). USENIX Association, Jul.
2021, pp. 551–564. [Online]. Available: https://www.usenix.org/
conference/atc21/presentation/ren-jie

[28] V. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch,
M. Shoeybi, and B. Catanzaro, “Reducing activation recomputa-
tion in large transformer models,” arXiv preprint arXiv:2205.05198,
2022.

[29] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2020, pp. 1–16.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

[31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[32] Z. Zhang, X. Han, H. Zhou, P. Ke, Y. Gu, D. Ye, Y. Qin, Y. Su, H. Ji,
J. Guan et al., “Cpm: A large-scale generative chinese pre-trained
language model,” AI Open, vol. 2, pp. 93–99, 2021.

[33] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” Journal of Machine
Learning Research, vol. 21, pp. 1–67, 2020.

[34] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,”
2021.

[35] J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “Fast-
moe: A fast mixture-of-expert training system,” arXiv preprint
arXiv:2103.13262, 2021.

[36] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra,
A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al.,
“Palm: Scaling language modeling with pathways,” arXiv preprint
arXiv:2204.02311, 2022.

[37] V. Gabeur, C. Sun, K. Alahari, and C. Schmid, “Multi-modal trans-
former for video retrieval,” in European Conference on Computer
Vision. Springer, 2020, pp. 214–229.

[38] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and
A. Smola, “Parameter server for distributed machine learning,”
in Big Learning NIPS Workshop, vol. 6, 2013, p. 2.

[39] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo, “A generic communication scheduler for distributed dnn
training acceleration,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 16–29.

[40] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “Tictac: Acceler-
ating distributed deep learning with communication scheduling,”
SysML 2019, 2019.

[41] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He,
“Zero-infinity: Breaking the gpu memory wall for extreme scale
deep learning,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis,
ser. SC ’21. New York, NY, USA: Association for Computing
Machinery, 2021. [Online]. Available: https://doi.org/10.1145/
3458817.3476205

[42] D. Foley and J. Danskin, “Ultra-performance pascal gpu and
nvlink interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17, 2017.

[43] S. Zhao, F. Li, X. Chen, X. Guan, J. Jiang, D. Huang, Y. Qing,
S. Wang, P. Wang, G. Zhang et al., “Vpipe: A virtualized acceler-
ation system for achieving efficient and scalable pipeline parallel
dnn training,” IEEE Transactions on Parallel and Distributed Systems,
2021.

[44] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” arXiv preprint arXiv:1609.04747, 2016.

[45] J. H. Park, G. Yun, M. Y. Chang, N. T. Nguyen, S. Lee, J. Choi,
S. H. Noh, and Y.-r. Choi, “Hetpipe: Enabling large {DNN}
training on (whimpy) heterogeneous {GPU} clusters through
integration of pipelined model parallelism and data parallelism,”
in 2020 {USENIX} Annual Technical Conference ({USENIX}{ATC}
20), 2020, pp. 307–321.

[46] L. G. Valiant, “A bridging model for parallel computation,” Com-
munications of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[47] W. A. Gardner, “Learning characteristics of stochastic-gradient-
descent algorithms: A general study, analysis, and critique,” Signal
processing, vol. 6, no. 2, pp. 113–133, 1984.

[48] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A theoret-
ical framework for back-propagation,” in Proceedings of the 1988
connectionist models summer school, vol. 1, 1988, pp. 21–28.

[49] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets
with sublinear memory cost,” arXiv preprint arXiv:1604.06174,
2016.

[50] Nvidia, “Nccl hangs during ncclsend and ncclrecv.” [Online].
Available: https://github.com/NVIDIA/nccl/issues/584

[51] “jcpeterson/openwebtext,” https://github.com/jcpeterson/
openwebtext.

[52] “huggingface/wikipedia,” https://huggingface.co/datasets/
wikipedia.

[53] “Wudaocorpora 2.0,” https://resource.wudaoai.cn/home.
[54] “allenai/c4,” https://huggingface.co/datasets/allenai/c4.
[55] S. Rashidi, M. Denton, S. Sridharan, S. Srinivasan, A. Suresh, J. Nie,

and T. Krishna, “Enabling compute-communication overlap in dis-
tributed deep learning training platforms,” in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 540–553.

[56] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learning,” in 15th
{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 21), 2021.

[57] S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team, “An empir-
ical model of large-batch training,” arXiv preprint arXiv:1812.06162,
2018.

[58] C. Li, M. Zhang, and Y. He, “Curriculum learning: A regulariza-
tion method for efficient and stable billion-scale gpt model pre-
training,” arXiv preprint arXiv:2108.06084, 2021.

[59] “Nvidia selene: Leadership-class supercomputing infrastructure,”
https://www.nvidia.com/en-us/on-demand/session/
supercomputing2020-sc2019/.

[60] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania et al., “Pytorch distributed:
Experiences on accelerating data parallel training,” arXiv preprint
arXiv:2006.15704, 2020.

[61] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed
deep learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[62] Y. Xu, H. Lee, D. Chen, H. Choi, B. Hechtman, and S. Wang, “Au-
tomatic cross-replica sharding of weight update in data-parallel
training,” arXiv preprint arXiv:2004.13336, 2020.

http://arxiv.org/abs/1909.08053
https://github.com/NVIDIA/Megatron-LM/tree/main/megatron
https://github.com/NVIDIA/Megatron-LM/tree/main/megatron
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://github.com/NVIDIA/nccl/issues/584
https://github.com/jcpeterson/openwebtext
https://github.com/jcpeterson/openwebtext
https://huggingface.co/datasets/wikipedia
https://huggingface.co/datasets/wikipedia
https://resource.wudaoai.cn/home
https://huggingface.co/datasets/allenai/c4
https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2019/
https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2019/


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JULY 2022 18

[63] L. Guan, W. Yin, D. Li, and X. Lu, “Xpipe: Efficient pipeline
model parallelism for multi-gpu dnn training,” arXiv preprint
arXiv:1911.04610, 2019.

[64] Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song, and I. Stoica,
“Terapipe: Token-level pipeline parallelism for training large-scale
language models,” in International Conference on Machine Learning.
PMLR, 2021, pp. 6543–6552.

[65] Y. Xu, H. Lee, D. Chen, B. Hechtman, Y. Huang, R. Joshi,
M. Krikun, D. Lepikhin, A. Ly, M. Maggioni et al., “Gspmd: general
and scalable parallelization for ml computation graphs,” arXiv
preprint arXiv:2105.04663, 2021.

[66] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanan-
takool, P. Hawkins, H. Lee, M. Hong, C. Young et al., “Mesh-
tensorflow: Deep learning for supercomputers,” Advances in neural
information processing systems, vol. 31, 2018.

[67] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with
conditional computation and automatic sharding,” arXiv preprint
arXiv:2006.16668, 2020.

[68] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf et al., “Mlperf
training benchmark,” Proceedings of Machine Learning and Systems,
vol. 2, pp. 336–349, 2020.

[69] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed dnn train-
ing,” Proceedings of Machine Learning and Systems, vol. 1, pp. 132–
145, 2019.

[70] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unified
architecture for accelerating distributed {DNN} training in het-
erogeneous {GPU/CPU} clusters,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), 2020, pp.
463–479.

[71] S. Li and T. Hoefler, “Chimera: efficiently training large-scale
neural networks with bidirectional pipelines,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2021, pp. 1–14.

[72] W. Zeng, X. Ren, T. Su, H. Wang, Y. Liao, Z. Wang, X. Jiang,
Z. Yang, K. Wang, X. Zhang et al., “Pangu-α: Large-scale autore-
gressive pretrained chinese language models with auto-parallel
computation,” arXiv preprint arXiv:2104.12369, 2021.

[73] C. He, S. Li, M. Soltanolkotabi, and S. Avestimehr, “Pipetrans-
former: Automated elastic pipelining for distributed training of
transformers,” arXiv preprint arXiv:2102.03161, 2021.

[74] J. M. Tarnawski, A. Phanishayee, N. Devanur, D. Mahajan, and
F. Nina Paravecino, “Efficient algorithms for device placement of
dnn graph operators,” Advances in Neural Information Processing
Systems, vol. 33, pp. 15 451–15 463, 2020.

[75] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model paral-
lelism for deep neural networks,” SysML 2019, 2019.

[76] S. Bojja Venkatakrishnan, S. Gupta, H. Mao, M. Alizadeh et al.,
“Learning generalizable device placement algorithms for dis-
tributed machine learning,” Advances in Neural Information Process-
ing Systems, vol. 32, 2019.

[77] A. Paliwal, F. Gimeno, V. Nair, Y. Li, M. Lubin, P. Kohli, and
O. Vinyals, “Reinforced genetic algorithm learning for optimizing
computation graphs,” arXiv preprint arXiv:1905.02494, 2019.

[78] P. Barham, A. Chowdhery, J. Dean, S. Ghemawat, S. Hand, D. Hurt,
M. Isard, H. Lim, R. Pang, S. Roy et al., “Pathways: Asynchronous
distributed dataflow for ml,” Proceedings of Machine Learning and
Systems, vol. 4, pp. 430–449, 2022.

[79] C. Hwang, W. Cui, Y. Xiong, Z. Yang, Z. Liu, H. Hu, Z. Wang,
R. Salas, J. Jose, P. Ram et al., “Tutel: Adaptive mixture-of-experts
at scale,” arXiv preprint arXiv:2206.03382, 2022.

Fanxin Li received the BE degree from Xi’an
Jiaotong University in 2019. He is currently work-
ing toward the PhD degree at The University of
Hong Kong. His research interests include dis-
tributed machine learning and cloud computing.

Shixiong Zhao received his Bachelor degree in
HKU and his master degree in HKUST. He is
currently a PhD student in Computer Science
of HKU. He is under the supervision of Prof.
Heming Cui. His research interests include dis-
tributed systems for high performance comput-
ing, distributed systems and system security. He
is a student member of IEEE.

Yuhao Qing received his Bachelor degree in
City University of Hong Kong. He is currently a
PhD student in Computer Science of HKU, un-
der the supervision of Prof. Heming Cui. His re-
search interests includes machine learning sys-
tems and cloud computing.

Xusheng Chen received his Bachelor degree in
HKU. He is currently a Ph.D. student in Com-
puter Science of HKU. He is under the super-
vision of Prof. Heming Cui. His research in-
terests include distributed consensus protocols,
distributed systems and system security.

Xiuxian Guan received his bachelor’s degree
in the University of Science and Technology of
China. He is currently a PhD student in the
Department of Computer Science in HKU, co-
supervised by Prof. Heming Cui from HKU and
Prof. Rui Wang from SusTech. His research in-
terest includes distributed systems, wireless net-
works, machine learning and more.

Sen Wang received the B.S. degree from the
University of Science and Technology of China
(USTC), Hefei, China, in 2005, the M.S. de-
gree from the Chinese Academy of Sciences
(CAS), Beijing, China, in 2008, and the Ph.D.
degree from Tsinghua University, Beijing, China,
in 2014, all in computer science. From 2014 to
2019, he was a lecturer and then an associate
professor at Chongqing University, Chongqing,
China. Currently, he is a senior researcher at

Huawei, Hongkong. His research interests include information-centric
networking, Federated Learning and AI for System.

Gong Zhang is a chief architect researcher sci-
entist, director of the Huawei Future Network
Theory Lab. His major research directions are
network architecture and large-scale distributed
systems. He has abundant experience on sys-
tem architect in networks, distributed system and
communication system for more than 20 years.
He has more than 90 global patents.

Heming Cui is an Associate Professor in Com-
puter Science of HKU. His research interests
include operating systems, programming lan-
guages, distributed systems, and cloud comput-
ing, with a particular focus on building software
infrastructures and tools to improve reliability
and security of real-world software. He is a mem-
ber of IEEE.


	Introduction
	Background and Motivation
	Parallelism Dimensions
	3D Parallelism

	Fold3D System
	Architecture Overview
	AIAO Scheduling
	Performance Modeling

	Fold3D Runtime
	Implementation
	Preemptive communication scheduling
	CPU Offloading

	Evaluation
	End-to-End Performance
	Evaluation of Parallel Configurations
	PP v.s. DP
	PP v.s. TP
	DP v.s. TP
	Impact of Segments

	Ablation Study
	Effectiveness Analysis
	Lessons Learned

	Related work
	Conclusion
	References
	Biographies
	Fanxin Li
	Shixiong Zhao
	Yuhao Qing
	Xusheng Chen
	Xiuxian Guan
	Sen Wang
	Gong Zhang
	Heming Cui


