
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 1

VPIPE: A Virtualized Acceleration System for Achieving Efficient and Scalable
Pipeline Parallel DNN Training

Shixiong Zhao†, Fanxin Li†, Xusheng Chen, Xiuxian Guan, Jianyu Jiang, Dong Huang,
Yuhao Qing, Sen Wang, Peng Wang, Gong Zhang, Cheng Li, Ping Luo, Heming Cui∗, Member, IEEE,

Abstract—The increasing computational complexity of DNNs achieved unprecedented successes in various areas such as machine
vision and natural language processing (NLP), e.g., the recent advanced Transformer has billions of parameters. However, as
large-scale DNNs significantly exceed GPU’s physical memory limit, they cannot be trained by conventional methods such as data
parallelism. Pipeline parallelism that partitions a large DNN into small subnets and trains them on different GPUs is a plausible
solution. Unfortunately, the layer partitioning and memory management in existing pipeline parallel systems are fixed during training,
making them easily impeded by out-of-memory errors and the GPU under-utilization. These drawbacks amplify when performing neural
architecture search (NAS) such as the evolved Transformer, where different network architectures of Transformer needed to be trained
repeatedly. VPIPE is the first system that transparently provides dynamic layer partitioning and memory management for pipeline
parallelism. VPIPE has two unique contributions, including (1) an online algorithm for searching a near-optimal layer partitioning and
memory management plan, and (2) a live layer migration protocol for re-balancing the layer distribution across a training pipeline.
VPIPE improved the training throughput of two notable baselines (Pipedream and GPipe) by 61.4%-463.4% and 24.8%-291.3% on
various large DNNs and training settings.

Index Terms—Machine Learning, Distributed systems, Distributed Artificial Intelligence, Pipeline, Parallel systems, Memory
management

F

1 INTRODUCTION

IN recent years, large deep neural networks (DNNs), in-
cluding Transformer [52], BERT [10], AmoebaNet [39],

and GNMT [58], are getting explosively deeper (i.e., more
layers) and wider (i.e,. more parameters per layer) for higher
modeling capacities. For instance, Transformer [52] has
more than 600 layers (i.e., execution operators) and 6 billion
parameters. This rising complexity of DNN models has
also expedited the emergence of neural architecture search
(NAS) (e.g., evolved Transformer [45]), where the layers
of a model are dynamically activated/deactivated during
training [39], [45] to search for a DNN architecture with high
accuracy. This increasing complexity and dynamicity make
it even more difficult for training a large DNN, considering
that each GPU has only up to tens of gigabytes memory [18].

Pipeline parallelism is a promising approach to train
large DNNs with lots of layers on multiple GPUs, where the
DNN is partitioned into multiple stages, each containing a
number of layers and running on a GPU. Existing pipeline
parallel systems [14], [19], [33], [59] adopt a static partition
policy, where the stage partition is fixed throughout the
entire training process. A typical DNN training iteration
contains a forward pass and a backward pass through all

∗ Heming Cui is the corresponding author.

• S. Zhao and F. Li equally contribute. S. Zhao, F. Li, X. Chen, X. Guan,
J. Jiang, D. Huang, Y. Qing, P. Luo, H. Cui are with the Department
of Computer Computer Science, The University of Hong Kong, HKSAR,
China. E-mails: sxzhao, fxli, xschen, xxguan, jyjiang, dhuang, yhqing,
pluo, heming@cs.hk.hk.

• S. Wang, P. Wang, and G. Zhang are with the Theory Lab, 2012
Labs, Huawei Technoloies, Co. Ltd, HKSAR, China. E-mails: wangsen31,
wang.peng6, nicholas.zhang@huawei.com.

• C. Li is with the School of Computer Science and Technology, University
of Science and Technology of China. E-mail: chengli7@ustc.edu.cn.

Manuscript received Nov 12, 2020; revised Feb 10, 2021 and Mar 21, 2021;
accepted Mar 24, 2021.

stages. The major memory consumption on each GPU (or
stage) is for storing activations produced in a forward pass
and reused in a backward pass [18], [37].

For high hardware efficiency (i.e., high GPU ALU uti-
lization), a pipeline parallel system injects multiple batches
of inputs and overlaps their forward and backward pass ex-
ecutions, forming a pipeline. Compared with a data parallel
system [28], which needs to transfer enormous parameter
updates among GPUs, a pipeline parallel system only needs
to transfer intermediate data between layers across stages,
significantly reducing the network consumption [33]. There-
fore, more complex DNNs [19], [39], [45] are trained with
pipeline parallel systems [14], [19], [33], [59].

An efficient pipeline parallel system should achieve two
crucial design goals. First, as the system injects multiple
input batches, it should carefully manage all stages’ training
memory to avoid exceeding the physical memory capacity
on any GPU (G1). Otherwise, it will either cause out-of-
memory errors or trigger synchronous paging events that
significantly block the training execution of a DNN (dis-
cussed in §7). Second, to maximize the efficiency (i.e., high
GPU ALU utilization and no stage stalls), the system should
enforce a “balanced” partition (G2) such that all stages
achieve roughly the same high throughput [19], [33]: data

Fig. 1: A four-stage pipeline (Pipedream [33]). Stage 0 keeps
four copies of activations, while stage 3 keeps only one copy.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 2

items processed per second by the pipeline. Unfortunately,
despite much effort [14], [19], [33], [59] on building pipeline
parallel systems, simultaneously realizing these two design
goals for complex and dynamic DNNs is still an open
problem.

Existing pipeline parallel systems fall into two cate-
gories. The first category (Pipedream [33] and XPipe [14])
keeps activation tensors produced during forward passes
directly in GPU memory. However, due to the forward-then-
backward nature of DNN training, activation tensors in the
front stages reside longer in GPU memory than those in
the rear stages (Fig. 1). Thus, when more input batches are
injected, the front stages have to keep many more copies of
activations than the rear stages.

To meet G1 on the front stages, systems in the first
category have to keep a moderate batch size [10], [39], [52],
[58]. Still, a larger training batch size can lead to higher
GPU ALU utilization and higher throughput [60]. In our
evaluation (§6.1), when training Transformer with 8 GPUs,
Pipedream [33] supported a batch size of only 32. Each
GPU’s ALU utilization rate was 42.3% on average, making
the training throughput only 46.1% of the ideal throughput:
the theoretical throughput supposing a system runs on
GPUs with unlimited physical memory and utilizing all
GPU ALUs (also defined in other systems [18]), and the
stage partition is always balanced (G2).

The second category (GPipe [19] and PipeMare [59])
discards all activation tensors in the forward passes and
recomputes them in the backward passes. This significantly
alleviates the imbalanced GPU memory utilization between
the front stages and rear stages, but at the cost of an extra
forward pass. In our evaluation (§6.1), GPipe [19] supported
a batch size of 128 when training the Transformer with 8
GPUs, and the each GPU’s ALU utilization rate can be up to
95.6%. However, this all-recompute strategy inevitably leads
to wasted ALU utilization of 29.4%, and GPipe incurred
merely 66.2% effective ALU utilization: the useful GPU ALU
utilization that contributes to the DNN training, but not the
recompute utilization.

Moreover, both categories of pipeline parallel systems
encounter even more severe throughput degradation when
a DNN model enables NAS, where both the number and
layout of the model’s layers can be modified by a runtime
algorithm (e.g., evolution algorithm [39], [45]). An evalua-
tion (§6.3) is conducted by running a NAS-enabled Trans-
former [45] on one notable system in each category (i.e.,
Pipedream and GPipe). Compared with the defined ideal
throughput, Pipedream’s throughput dropped to 17.7%, and
GPipe’s throughput dropped to 25.3%.

Overall, despite great advances, existing pipeline par-
allel systems still incur suboptimal training efficiency on
either static or dynamic (e.g., NAS enabled) DNN training.
We believe the key reason is that these systems use static
strategies for both memory management and layer parti-
tioning. When stages become intense, caused by either GPU
memory explosion or newly activated layers, these static
strategies prevent themselves from using the available GPU
resources in adjacent stages to alleviate these intense stages.

This paper presents VPIPE, the first dynamic DNN layer
partitioning and memory management system acting as a
virtualized layer between a typical pipeline parallel system

0 10 20
Time (hours)

18

20

22

BL
EU

 S
co

re

P(32)
P-V(128)
5th epoch

(a) Transformer.

500 1000
Time (seconds)

0

200

400

600

TP
T

(it
em

s /
 se

c)

P
P-V
Ideal

(b) Evolved Transformer.

0 5 10 15
Time (hours)

22

24

26

BL
EU

 S
co

re

G(128)
G-V(128)
5th epoch

(c) Transformer.

500 1000
Time (seconds)

0

200

400

600

TP
T

(it
em

s /
 se

c)

G
G-V
Ideal

(d) Evolved Transformer.

Fig. 2: (a)(b) With VPIPE integrated, Pipedream-VPIPE (P-
V) and GPipe-VPIPE (G-V) achieved faster convergence
than Pipedream (P) and GPipe (G) when training Trans-
former [52] with 8 GPUs. (b)(d) When NAS was enabled in
the Evolved Transformer [45], the training throughout (TPT)
of Pipedream and GPipe further dropped, while Pipedream-
VPIPE and GPipe-VPIPE could cope with this dynamicity.

(e.g., Pipedream [33] or GPipe [19]) and its underlying
execution engine (e.g., PyTorch [36] or Tensorflow [1]).
VPIPE automatically and transparently realizes both design
goals (G1 and G2) by automatically finding a globally
near-optimal plan, which migrates layers among stages and
relocates each layer’s activations and parameters to its cur-
rent stage’s GPU or CPU memory. VPIPE can significantly
alleviate the intense stages of a pipeline and improve the
pipeline’s throughput in a balanced way (e.g., Fig. 2).

To achieve G1, instead of GPipe’s all-recompute strat-
egy, VPIPE computes a hybrid plan of both swap and
recompute for all layers on each stage. Specifically, swap
asynchronously evicts activation tensors to CPU memory
and pre-fetches them back to GPU memory before its cor-
responding backward usage starts. In pipeline parallelism,
there usually exists an opportunity window, filled by other
input batches’ executions, between the forward pass and
backward pass of each input batch. Leveraging this window,
VPIPE masks the swap time by precisely predicting the
arrival time of the backward pass and overlapping the cost
with other input batches’ executions.

To achieve G2, instead of using a static partition strat-
egy, VPIPE online generates new partition plans and trans-
parently live migrates layers from intense stages to their
adjacent stages, both alleviating the memory burdens on
intense stage (G1) and achieving more balanced partitions
with higher throughput (G2).

However, realizing these two goals in VPIPE must tackle
two technical challenges. The first challenge is searching
for a globally efficient swap, recompute, and repartition
(SRP) strategy among all stages. We took the first step in
the literature to model this challenge into a combinatorial
optimization problem (§4.1). However, the problem is NP-
hard due to its exponential search space [2], [3], [50].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 3

To address this challenge, we created a fast-converging,
near-optimal search algorithm using the powerful decom-
position methodology [32], [47] via two observations. First,
we can iteratively migrate layers from an intense stage to
its adjacent stages, enabling new optimization space for a
better hybrid plan of swap and recompute on each stage
(§4.2). Second, the architecture (layout) of a typical complex
DNN [39], [58] is usually constructed as a coarsened graph
of repeated subgraphs, which are readily easy to be parti-
tioned into an optimal plan [19], [33] that meets G2; VPIPE
fast detects this coarsened graph by precisely distinguish-
ing intra edges inside subgraphs and nested edges among
subgraphs, leveraging the time series distance between each
edge’s two vertices (layers) collected at runtime execution.

The second challenge is how to live (i.e., no GPU stalls
nor pipeline cleaning) migrate a layer while keeping VPIPE
transparent [49] to general upper pipeline parallelism sys-
tems (i.e., VPIPE does not add nor reduce parameter stale-
ness [14], [33], [59] to the upper system). Existing pipeline
parallel systems [14], [33], [59] carefully designed various
strategies to orchestrate (add or reduce) the staleness on pa-
rameter updates for higher training accuracy or throughput
on specific DNNs.

VPIPE guarantees that a layer is migrated as if repar-
titioned by a non-live approach: stop injecting new input
batches for the upper system, clean up the pipeline, migrate
the layer, and reboot a new pipeline. To handle the migrated
layer’s unfinished backward passes, we present a new live
migration protocol. Our key observation is that the time
window between the activation generation (in a forward
pass) and its final usage (in the corresponding backward
pass) allows a subtle interleaving for VPIPE to live migrate a
layer transparently without altering the parameter staleness
of the upper system.

We implemented VPIPE in PyTorch [36] by adding 2782
LoC. We evaluated all six prevalent DNN models, in-
cluding four complex DNNs Transformer [52], BERT [10],
AmoebaNet [39], GNMT [58], and two simple DNNs
ResNet50 [15], VGG16 [44], that are evaluated in all rele-
vant systems Pipedream [33], GPipe [19], XPipe [14], and
PipeMare [59]. The evaluation shows that:

• VPIPE was efficient in training complex DNNs. VPIPE
improved Pipedream’s and GPipe’s throughput by
109.7% and 30.7% on average for four complex
DNNs. VPIPE enlarged Pipedream’s supported batch
size by 3.75x. Within the same training time, VPIPE
made Pipedream achieve higher training quality (e.g.,
BLEU [58]).

• VPIPE was scalable. When training the four complex
DNNs on 4-16 GPUs, VPIPE’s throughput increased
roughly linearly with the GPU numbers. When running
on 16 GPUs, VPIPE improved Pipedream’s and GPipe’s
throughput by 323.3% and 20.7%.

• VPIPE was efficient in NAS workloads. When evaluated
on Transformer [45] and AmoebaNet [39], the only two
evaluated complex DNNs that support NAS features,
VPIPE improved Pipedream’s and GPipe’s throughput
by 421.3%-463.4% and 245.4%-291.3%.

Our main contribution is VPIPE, the first dynamic layer
live partition and memory management system, serving

(a)

(b)
Fig. 3: Logical BSP pipeline (a) that demonstrates the bubble
problem and a realtime nsys/nvprof GPU profiling (b) that
verifies the bubble problem in BSP pipeline with four-stage
GPipe training; red blocks are sync barriers.

(a)

(b)
Fig. 4: Logical ASP pipeline (a) and a realtime nsys/nvprof
GPU profiling (b) of ASP pipeline with four-stage
Pipedream training; red blocks are sync barriers.

as a transparent underlying acceleration layer for typi-
cal pipeline parallel systems (e.g., Pipedream and GPipe).
Our major novelty is a fast and near-optimal stage-
distributed search algorithm for finding a globally efficient
swap, recompute, and partition strategy, greatly improving
VPIPE’s efficiency and scalability. Our secondary novelty
is a transparent live migration protocol without stalling
the executions or altering the upper system’s parameter
staleness. VPIPE’s source code and evaluation framework
are released at: github.com/hku-systems/vpipe.

In the rest of this paper, §2 presents the background;
§3 gives an overview of VPIPE; §4 describes VPIPE’s run-
time design; §5 and §6 present VPIPE’s implementation and
evaluation results; §7 discusses the related work, and §8
concludes.

2 BACKGROUND

2.1 DNN Training
DNN [10], [15], [29], [44], [46] is known to be the fundamen-
tal machine learning paradigm in deep learning. A DNN
model typically contains hundreds of layers, and the goal of
DNN training is to find an appropriate set of model param-
eters to fit a training dataset. Each DNN training process
typically consists of millions of iterations, each containing a
forward pass, a backward pass, and an optimization step.

The memory consumption of DNN training contains
four parts: parameters of each layer; activations, i.e., feature
maps produced by each layer in the forward pass; gradients,
i.e., gradient maps produced by each layer in the backward

github.com/hku-systems/vpipe

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 4

pass; and scratch space for computation. Among these four
parts, activations take the most significant portion (up to
73.3%) of the total memory consumption for DNN training.
Activations are created in the forward pass and reused in the
backward pass, so there exists a large time window between
the two memory accesses. Activation memory is the major
optimization target in previous work [18], [37].

2.2 Pipeline Parallel DNN Training

With the DNN training getting increasingly computation
and memory intensive, distributed training systems across
multiple GPUs become a must. Distributed training systems
can be categorized as data parallel or model parallel. Data
parallel systems [28] let each GPU maintain a copy of the
complete model. In each iteration, each GPU trains on a
small batch and synchronizes the parameter updates with
other GPUs using all reduce [43] or parameter sever [28].
However, data parallelism is not designed to train large
DNNs that cannot fit into a single GPU’s memory.

Pipelined model parallelism (i.e., pipeline parallelism)
aims to scale the supported DNNs to the number of GPUs
by partitioning a DNN model into multiple stages (a con-
secutive set of layers) and letting each GPU handle one
stage. Pipeline parallelism is a pipeline version of model
parallelism, where vanilla model parallelism leads to severe
under-utilization due to the bubble problem caused by the
sequential dependency between stages. Pipeline parallelism
overlaps the computation and waiting time of different
input batches, fills the bubbles, and improves the utilization.
Based on how a pipeline parallel system handles synchro-
nization of DNN parameters among input batches, the sys-
tem falls into two categories: barrier synchronous parallel
(BSP) systems and asynchronous parallel (ASP) systems.

BSP systems (e.g., GPipe [19]) let a set of training input
batches work on the same version of model parameters, ag-
gregate gradients computed by these iterations, and enforce
a barrier that stops the pipeline to apply the gradients to
the model parameter. BSP systems achieve almost the same
statistical performance as vanilla model parallelism [19].
However, as shown in Fig. 3a, a BSP pipeline logically still
incurs bubbles during each barrier synchronization, and we
verified this in Fig. 3b by profiling the GPUs during a four-
stage BSP pipeline training.

ASP systems (e.g., Pipedream [33] and PipeMare [59])
remove the sync barrier and let each input batch directly
update the model parameters. Although bubbles are elimi-
nated (as shown in Fig. 4), ASP systems suffer from param-
eter staleness in two aspects. First, the parameter version
differs between a pipeline’s forward pass and backward
pass. Second, the parameter version differs among stages
within the training of an input batch. Pipedream [33],
XPipe [14], and PipeMare [59] provide various algorithm-
level mitigation to the parameter staleness problem. VPIPE
is designed to be a transparent layer under either a BSP or
an ASP pipeline parallelism algorithm; and VPIPE’s designs
(§4.3) do alter the weight staleness in the upper systems.

Scheduling. One forward one backward (1F1B) schedul-
ing is first introduced by Pipedream [33] and adopted by
successive systems (e.g., PipeMare [59] and XPipe [14]). In
1F1B scheduling (e.g., Fig. 1), each stage alternates between

performing forward pass for a current input batch and back-
ward pass for an earlier input batch. 1F1B is widely adopted
due to its high computational efficiency [33], [59] and low
memory usage. Therefore, in this paper, we assume that the
upper pipeline parallel systems adopt 1F1B scheduling.

2.3 Dynamic DNN Training
Recently, more and more developers have adopted dynamic
DNN training where the number of layers varies with
the training inputs (e.g., DyNet [34]) or the training is
exploratory (e.g., neural architecture search [45], [55], [57],
[62]). In such a case, a training workload (i.e., the GPU
computation and memory required for training) varies as
the training proceeds. Since the efficiency of pipeline par-
allelism highly depends on the workload partition among
stages, this dynamicity exposes special requirements for
pipeline parallel systems.

The variance of training workload usually happens very
frequently. For example, a neural architecture search (NAS)
process [39], [45] adopts an evolutionary algorithm that
trains a set of models, fast eliminates those with low fitting
scores, and initiates new ones. Thus, “bad” models can be
eliminated within a few minutes [39], [45].

Existing pipeline parallel systems profile a static parti-
tion before the training starts. This static partition inherently
cannot adapt to the dynamicity in the training process.
VPIPE copes with this dynamicity by a wait-free live layer
migration protocol (§4.2) that transparently re-balances the
training load when changed.

3 VPIPE’S ARCHITECTURE

Fig. 5 shows VPIPE’s architecture, a virtualized layer be-
tween a typical pipeline parallel system and its underlying
execution engine. On each host, there is a virtualized tensor
manager, a training monitor, and a layer manager. On the
host of the last stage, there is a global planner.

Virtualized tensor manager (VTM) provides fine-
grained management to each parameter and activation ten-
sor. VTM holds each layer’s tensor (parameter or activation)
information, including layer ID, stage ID, property (param-
eter or activation), training iteration ID, version, manage-
ment policy (vStatus), storage status, and the pointer to
the tensor’s real storage constructs. An activation tensor’s
information is initialized in VPIPE’s tensor manager when
created and deleted when released. For parameter tensors,
VPIPE creates tensor information as long as the model is
initialized. The management policy of a layer’s tensors is
managed by the layer manager.

Training monitor monitors each stage’s runtime statis-
tics, including real-time memory usage of each GPU on
these hosts, PCIe bandwidth usage, network usage, execu-
tion time, and recompute time. Along with forward passes
of the normal training iterations, the training monitor passes
its own runtime statistics and the upstream stages’ (if any)
to its downstream stages.

Global planner collects the runtime statistics of all
stages at the end of every forward pass. It produces new
partition strategies (if needed) according to VPIPE’s SRP
algorithm (§4.2). It resides on the last host for two rea-
sons. First, in pipeline parallelism, rear stages usually have

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 5

Fig. 5: Architecture of VPIPE. VPIPE is a virtualized layer between a typical pipeline parallel system (e.g., Pipedream [33]
or GPipe [19]) and its underlying execution engine (e.g., PyTorch [36] or Tensorflow [1]). We use different colors to refer
layers set by VPIPE’s operations including default (D), swap (S), recompute (R), and migrate (M).

less computation and communication burdens. Second, as
the runtime statistics are collected every training iteration,
VPIPE transfers the runtime statistics along with the forward
pass and distributes the new partition (if any) along with the
backward pass. By doing so, VPIPE’s global planner does not
need extra distributed coordination.

Layer manager receives a new partition strategy from
the global planner, diffs the new partition from its current
partition to check whether a layer migration should be
scheduled. For example, when a layer needs to be migrated,
the migration manager of the source stage will coordinate
with the tensor manager to asynchronously swap the layer’s
parameter tensors and activation tensors to the CPU mem-
ory; and then transfer the parameter and activation tensors
to the migration manager of the target stage. The migration
manager of the target stage will initialize the layer in the tar-
get GPU, receive the parameter and activation tensors from
the source stage, and append the new layer to the forward
pass and backward pass executions (§4.3). Layer manager
also produces the local swap and recompute policies (§4.2).

Overall, VPIPE’s design is transparent to the upper
pipeline parallel systems. We integrated VPIPE into an ASP
system Pipedream [33] and a BSP system GPipe [19]. For
vanilla Pipedream, we set all layers’ vStatus to default;
and for vanilla GPipe, we set all layers’ vStatus to
recompute. VPIPE can also be integrated into other pipeline
parallel systems (e.g., PipeMare [59] and XPipe [14]) as long
as they support an imperative programming model.

4 VPIPE’S RUNTIME

4.1 Problem modeling
A major challenge for VPIPE’s design is to find an optimal
strategy of swap, recompute, and partition (SRP) so that
the steady-state throughput of the training pipeline can
be maximized. Since there is no model to quantify the
complexity of this SRP challenge, we take the first step in
the literature to formalize the SRP challenge, transform it
into a combinatorial optimization problem, and solve it by
a decomposition algorithm (§4.2).

A DNN is a graph G(N,E) with N layers (e.g., matrix
operation) and E edges connecting the layers. In pipeline
parallelism, a DNN model is partitioned to p stages, and
each stage is placed on one GPU (p GPUs in total). To
maximize the pipeline utilization, in a typical pipeline par-
allelism scheduling (§2), at least p input batches are simulta-
neously injected into the same pipeline. For each layer in the
model, we denote it with (fi, bi,mi, ai), including a forward
pass time fi, a backward pass time bi, a parameter memory
mi, and an activation memory ai.

The major constraint for pipeline parallel training is G1:
on each GPU, the training GPU memory usage should not
exceed any GPU’s physical memory limit (M). In pipeline
parallelism, the memory consumption of all layers in each
stage contains two parts. The first part is a constant memory
consumption (mconstant

i) that does not vary with the num-
ber of injected input batches; the second part is the depen-
dent memory consumption (mdependent

i), which depends on
the number of injected input batches and differs among
stages: given a stage k, p − k copies of mdependent

i should
be kept in memory. In BSP systems, parameters are updated
synchronously (§2), and all input batches in a pipeline share
the same version of parameters, thus mdependent

i is ai and
mconstant

i is mi. In ASP systems, each training iteration in
a pipeline may have an independent version of mi, thus
mdependent

i contains both ai and mi.

To reduce memory consumption, a pipeline parallel sys-
tem can apply swap or recompute strategy to each layer’s
dependent tensors, which are the main memory burden in
pipeline parallelism. Thus, for each tensor in a layer, we
denote its memory management policy with (Di, Ri, Si),
where Di, Ri, Si = 0 or 1, Di + Ri + Si = 1. D = 1
means the tensor by default resides in the GPU memory;
S = 1 means the tensor will be proactively swapped to CPU
memory and swapped back to GPU before usage; and R = 1
means the tensor will be dropped and recomputed by the
backward pass. Thus, in pipeline parallelism, the memory
constraint of each stage can be denoted as:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 6

Σ
lk≤i≤rk

mconstant
i +(p−k)∗ Σ

lk≤i≤rk
Di∗mdependent

i ≤M (1)

Nevertheless, the recompute of layers introduces extra
computation time to the backward pass. Thus, a stage’s
backward time is the sum of the original backward pass
time, the recompute time (i.e., extra forward pass of re-
computed layers), and the swap time if the swap time
cost is larger between the normal execution time (i.e.,
max(0, swap time− execution time)):

tbwd = Σ(bi+Ri∗fi)+max(0, (2∗Σ(Si∗md
i /P)−(tfwd+tbwd)))

(2)
Finally, we formalize the SRP challenge to a combinato-

rial optimization problem: given n layers and p GPUs, find a
swap or recompute policy for each layer (meet G1), as well
as a partition (meet G2), such that the pipeline throughput
can be maximized. The throughput of a pipeline is the
lowest throughput among all stages [22], [33]. All stages in
a pipeline have the same request rate. Thus, the pipeline’s
throughput bottleneck is the stage that has the longest
execution time (sum of the largest tfwd and largest tbwd).
Therefore, we convert this problem to finding a partition
and a swap/recompute policy such that the longest stage
execution time can be minimized:

minimize max
1≤k≤p

(tfwd
k + tbwd

k)

subject to (1)(2)
(3)

This optimization problem is hard to solve for two
reasons. First, the feasible set of this combinatorial opti-
mization problem spans an extremely large search space
(O(3|N |p|N |)), as each of layers N can have three memory
management policies and fall into p partitions. A graph par-
tition problem itself is well-known to be NP-complete [50].
Second, constraint (2) indicate that both the memory man-
agement policy of all layers ((Di, Ri, Si), for 1 ≤ i ≤ n,
denoted as V arsr) and the stage partition plan (denoted as
V arp) can affect the optimization objective in (3), making
this problem a multi-variable combinatorial optimization.

4.2 Swap, Recompute, and Repartition

We solve this multi-variable and combinatorial optimization
problem by decomposition [32], [47] methodology. The idea
of the decomposition methodology is to break a problem
into smaller sub-problems coordinated by the master prob-
lem (i.e., the optimization problem). Inspired by the conven-
tional decomposition method [32], [47], the key intuition is
to iteratively migrate a layer from an intense stage where
the GPU resource is exhausted to a relief stage and let the
intense stage have more optimization space to search for a
better hybrid plan of swap and recompute.

We decompose the master problem into two sub-
problems. First, we assume that V arp is constant, and each
stage locally finds a swap and recompute plan (V arsr)
depending on its GPU resource to minimize the objective
function (3). Second, we assume that V arsr is constant,
and stages should be repartitioned (i.e., find an optimal

V arp) to minimize (3). Algorithm 1 shows our decomposed
algorithm by iteratively resolve these two sub-problems.

Swap and recompute. For both swap and recompute,
the goal is to reduce the memory footprint with the low-
est overhead. For the swap, our goal is to maximize the
overlapping between swap and the normal execution. For
the recompute, our goal is to select the cheapest layer with
maximized memory saving to recompute. It has been well
studied in recent work (e.g., Capuchin [37]) that using a
hybrid combination of swap and recompute of activation
tensors can effectively reduce training memory on single
GPU DNN training. However, applying swap to a pipeline
parallel system has to address two subtle points.

First, an efficient swap plan should precisely predict
when a tensor that has been swapped to CPU RAM will
be reused in the backward pass. In single GPU training,
an activation tensor is generated by the forward pass of an
input batch training. The backward pass directly follows
the forward pass. Thus, existing swap techniques used
in single GPU training systems (e.g., SwapAdvisor [18],
Capuchin [37], vDNN [40], and SuperNeuron [56]) directly
make predictions based on a DNN’s graph (either profiled
or runtime generated).

However, there usually exists a window in pipeline par-
allelism, filled by other input batches’ executions, between
the forward pass and backward pass of each input batch.
To make a precise prediction, VPIPE oversees the runtime
statistics of each forward pass and its backward pass across
all stages of a pipeline (line 21-28 in Algorithm 1), and
let each VPIPE’s layer manager precisely predict the arrival
time of each backward pass execution.

Algorithm 1: Decomposed SRP Algorithm
1 Stage 1,..., p:
2 Function LayerManagerIterate():
3 newPlan = receiveBwdProp()
4 diff = compare(this.plan, newP lan)
5 if diff ! = null then
6 migrating = True
7 for l in diff do set(l.vStatus,Migrate)
8 stats = retrieveStats()
9 optimizeSR(stats) ##Algorithm 2

10 return

11 Function TrainingMonitorIterate():
12 if ! migrating then
13 stats = receiveFwdProp()
14 mem = cudaMemStats()
15 tfwd, tbwd = getExecT ime()
16 stats.append(this.meta,mem, tfwd, tbwd)
17 fwdPropagate(stats)
18 return

19 Global Planner:
20 Function GlobalPlannerIterate():
21 stats,migrating = receiveFwdProp()
22 if migrating then
23 return
24 unbalanced = checkBalanced(stats)
25 if unbalanced then
26 newPlan = layerRepartition() ##Algorithm 3
27 bwdPropagate(newPlan)
28 return

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 7

Algorithm 2: optimizeSR()

1 Input: layers in a stage, tfwd, tbwd, M , P , rank
2 foreach l in layers do
3 if l.a/P > l.tfwd then
4 l.cost = l.tfwd

5 l.op = Recompute

6 else
7 l.cost = l.mactivation/P
8 l.op = Swap

9 l.gain = l.mactivation/l.cost

10 window = tfwd + tbwd

11 space = P ∗ window
12 sorted = sortByGain(layers)
13 while space ≥ 0 do
14 l = sorted.pop()
15 set(l.vStatus, S)
16 space = space− rank ∗mactivation

17 while memConsume(layers) > M do
18 l = sorted.pop()
19 set(l.vStatus, l.op)

20 foreach l in layers do
21 l = sorted.pop()
22 set(l.vStatus,Default)

Second, in pipeline parallel systems, swap and net-
work communication impose severe burdens on the PCIe
lanes, causing severe PCIe interference that is not addressed
by single GPU training systems. In VPIPE, both network
communication and swap that pass throughput PCIe are
asynchronous streams [4]. To handle the PCIe interference,
VPIPE sets priorities to different asynchronous streams that
pass through PCIe. VPIPE sets a higher priority to network
communication for not blocking the pipeline execution.

VPIPE’s swap and recompute algorithm (Algorithm 2)
works as follows. For each stage, the algorithm takes a set
of layers, a memory limit M , PCIe bandwidth P , stage
rank (p-k), tfwd and tbwd of this stage as input. VPIPE
first sort all layers by the potential memory saving gain
of either swap or recompute (line 2-9). Until the PCIe is
full, VPIPE selects tensors according to their memory saving
gains to be asynchronously swapped (line 13-16). After
that, if the memory limit is still reached, VPIPE chooses
whether to swap or recompute an activation based on their
swap/recompute cost and memory saving gain (line 17-19).
For the rest of the layers, VPIPE keeps them by default (line
20-22). Leveraging the first subtle point, VPIPE can precisely
overlap the async swap cost of these tensors with normal
execution. With the second subtle point, the async swap will
not block the network communication of normal training
execution. Consequently, Algorithm 2 reduces the recom-
pute overhead with async swap in existing pipeline parallel
systems (e.g., GPipe [19]). VPIPE swaps activation tensors
first, as activation takes the most memory consumption;
VPIPE swap parameter tensors only if activation tensors are
all swapped, which rarely happens in our evaluation.

Layer Partition. The problem of partitioning a graph
G(N,E) into p equal partitions with the lowest cross-
partition communication cost is known to be NP-
complete [3] and has extensive applications in many areas,

including VLSI design [24], matrix factorization [7], and
social network clustering [35]. Kernighan-Lin (KL) algo-
rithm [25] is known to produce excellent partitions for a
wide class of problems and is used quite extensively [17],
[27]. To achieve a multi-partition, it recursively produces bi-
partition of graph G and iteratively improves it by exchang-
ing nodes in both partitions. KL algorithm is costly and
takes O(r|N |2 log |N |) [11] time (e.g., up to 16s to partition
a complex DNN model into 16 stages), where r is the re-
peated cycles. There are many approximate algorithms [11],
[12], [16], [48] that tend to be fast (near-linear) but often
yield partitions that are worse than those obtained by KL
algorithm [13], [23], [41] .

To make KL algorithm efficient, multi-level schemes
reduce the size of the graph (i.e., coarsen the graph) by col-
lapsing vertices and edges, partitioning the smaller graph,
and then uncoarsening it [17], [23]. Multi-level scheme has
been used in many areas, including matrix factorization [7]
and VLSI design [24]. However, these algorithms assume
domain-specific requirements for the graph (e.g., a sparse
matrix [7] or a planar graph [24]), which are not applicable
to a complex DNN graph (e.g., AmoebaNet [39]). More-
over, existing multi-level schemes all take multiple coarsen
steps. In VPIPE, leveraging the time series implied by the
DNN’s sequential executions, we identify two domain-
specific heuristics to design a fast and online multi-level
graph partition algorithm with a one-step coarsen scheme.

First, Deep Learning experts have already constructed
the graphs of complex DNNs (e.g., Transformer, BERT,
AmoebaNet, and GNMT), prevalently deployed with
pipeline parallelism, as sequentially connected and repeated
subgraphs of layers. Each subgraph is usually a basic block
(e.g., a Transformer block) for constructing a large DNN.
Inside each subgraph, there are intricate local edges (nested
edges) forming multiple execution branches. Partitioning
such a subgraph in two stages usually incurs huge network
communication costs between two GPUs.

There are also sparse nested edges that form branches
among blocks. However, network communication costs of
partitioning these sparse nested edges are often static and
do not vary with the partition plan. For example, in the
BERT model, each block should take input from the first
embedding layer, and it is necessary to pass the embedding
output to all stages. Thus, under any partition plan, the
network communication costs of transferring this input to
all stages are persistent.

Second, different from conventional graphs in partition-
ing problems [2], [3], [50], in a DNN graph, vertices (i.e.,
layers) are executed by the training engine in time series.
If a nested edge connects two vertices that have a gap that
is larger than a stage’s execution time in the time axis, the
edge has a high chance to be a sparse nested edge. If a nested
edge connected two vertices very close to each other in the
time axis, the edge is likely to be part of a subgraph.

Based on these heuristics, VPIPE’s layer repartition algo-
rithm (Algorithm 3) has three steps. First, VPIPE (line 7-21)
coarsens the DNN graph. In this step, each edge in a DNN
graph is classified with O(|N |+ |E|) cost to three categories:
critical edges that construct the sequential backbone of the
DNN graph, sparse nested edges, and subgraph edges.
Then VPIPE merges the subgraph edges to the sequential

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 8

Algorithm 3: layerRepartition()
1 Input: DNN Graph G(N,E), runtime statics of each layer

(layers), e.g., invoke time (T) of each layer
2 sorted = sortByT ime(layers)
3 Gcoarsened = coarsen(G(N,E))
4 bound = partition(Gcoarsened)
5 G = uncoarsen(Gcoarsened)
6 bound = refine(G, bound)
7 Function coarsen(G(V, E)):
8 mean = sum(t)/p
9 E∗ = []

10 foreach l1, l2 in pairwise(sorted) do
11 ##detect critical path edges
12 if e(l1, l2) in E then
13 annotate e(l1, l2) as critical edge
14 E∗.append(e(l1, l2))

15 foreach e in E − E∗ do
16 ##distingush sparse and subgraph edges
17 if e.v2.T − e.v1.T > mean then
18 annotate e(l1, l2) as sparse edge

19 else
20 annotate e(l1, l2) as subgraph edge

21 merge(E,E∗)

22 Function parition(G(V, E), p):
23 if p==1 then
24 return

25 bound,G1, G2 = KLParitition(G, cost)
26 return bound, partition(G1, p2), parition(G2, p2)

27 Function refine(G(V,E), bound):
28 foreach b in bound do
29 KLRefine(G(V,E), b)

backbone edges by aggregating their execution time and
communication. Second, VPIPE partitions this merged graph
by iteratively applying bipartition with KL algorithm [50]
(line 22-26). Third, VPIPE uncoarsens the merged graph to
the original DNN graph and refines the partition to see if
any potential better partition exists by KL refinement [17]
(line 27-29).

Analysis. VPIPE’s Algorithm 1 decomposes a master
problem into two sub-problems [32], [47]. VPIPE’s Algo-
rithm 2 is optimal as the sub-problem is a linear optimiza-
tion with simple constraints (i.e., the memory limit and the
PCIe limit). VPIPE’s Algorithm 3 is a successive algorithm
of the KernighanLin (KL) algorithm. KL algorithm is a
bipartition algorithm that starts from an initial bipartition
of a graph and exchanges the vertices of the two partitions
to see whether a better partition can be found [2], [3], [50].

The time complexity of the original KL algorithm is
O(r|N |2 log |N |), where r is the repeated cycles, and N is
the total set of layers. The time cost of running KL algorithm
on complex DNNs (e.g., AmoebaNet) is huge (up to 16s for
each run). With our two heuristics on recent complex DNN
graphs, VPIPE’s partition algorithm uses a coarsen phase
of complexity O(|N | + |E|) that coarsens a complex DNN
graph (e.g., AmoebaNet graph with 4280 layers/vertices
and 5080 edges) into a much smaller graph (e.g., coarsened
AmoebaNet with 132 vertices and 142 edges). By doing
so, the time cost of KL algorithm is greatly reduced. On

partitioning various DNN model, evaluation (§6.4) shows
that VPIPE’s partition algorithm speeds up the KL algorithm
by 4x-32x and achieves 0.15s-0.46s time cost (less than the
process time 1.21s-6.98s of one training input batch), fast
enough to be deployed online.

4.3 Live Layer Migration

Existing pipeline parallel systems (e.g., Pipedream and
GPipe) adopt a static layer partition before execution (§2).
To migrate a layer in these systems, developers need to
adopt a non-live approach: stop the runtime, modify the
layer partition configuration, and reboot the whole training
process. This process suffers from heavy bootstrap over-
head, including runtime initialization, model initialization,
and data loading (§2). Such a heavy overhead might dramat-
ically decrease the training efficiency when layer migration
is frequently triggered under a dynamic training process
(§6.4).

In VPIPE, we aim to design a live layer migration pro-
tocol for pipeline parallelism with a key technical require-
ment that the layer migration should remain transparent to
the upper systems so that VPIPE will not alter the upper
systems’ parameter staleness.

Existing pipeline parallel systems fall into two cat-
egories: BSP systems (GPipe [19]) and ASP systems
(Pipedream [33], PipeMare [59], and XPipe [14]). BSP sys-
tems have no parameter staleness (§2.2). ASP systems adopt
various parameter staleness strategies on different design
goals. BSP and ASP systems have their own strengths on
particular workloads. For instance, in Tab. 3, GPipe achieved
better accuracy than Pipedream on training Transformer
while achieved worse accuracy than Pipedream on training
BERT. Thus, VPIPE is designed to be transparent to the
upper systems so that VPIPE does not alter their parameter
staleness. VPIPE lets the programmer explicitly annotate the
type of system.

However, it is challenging to transparently migrate a
layer without losing liveness for both BSP and ASP systems.
The reason is that at any time in a pipeline, a layer can
always have multiple unfinished backward executions, and
these backward passes will produce updates to the layer
parameters. To avoid altering the parameter staleness, dur-
ing the migration of a layer, no updates produced by these
backward passes should be lost.

Moreover, in the typical scheduling of ASP systems
(§2.2), layers on different stages have different pipeline
execution interleaving. For example, in the last stage, the
forward pass of an input batch directly works on the pa-
rameter updated by the last input batch, while in the first
stage, the forward pass works on the parameter updated by
a much earlier input bach. For BSP systems, forward passes
on all stages work on the same version of parameters until
a parameter synchronization occurs. To avoid altering the
parameter staleness, during the migration of a layer, VPIPE
ensures that when a layer is migrated among stages, the ex-
ecution interleaving of this layer should change accordingly.
By doing so, VPIPE guarantees that a layer is migrated as if
repartitioned by a non-live approach.

We formalize the above transparency requirements.
Given a new input batch k, for q layers {l1, l2, ..., lq} in

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 9

Fig. 6: A forward layer migration triggered after the ending
of input batch k from stage n to stage m.

stage n of a training pipeline (0 ≤ n < p, where p is the
number of stages and the number of simultaneously injected
input batches), each layer must have p − n − 1 unfinished
backward passes. In ASP systems, in stage n, the forward
pass of input batch k should work on the version (Vk) of
layer parameters updated by k − p + n. In BSP systems, for
all stages, if the parameter synchronization happens every
u∗p input batches, the forward pass of input batch k should
work on the same parameter version k mod u ∗ p.

V k
fwd =

{
k − p + n if ASP
k mod u ∗ p if BSP

(4)

When a set of layers {li, ..., lj} are going to be migrated
from stage n to stage m, where m = n ± 1, for each layer,
VPIPE should migrate p−n−1 copy of activation tensors for
unfinished backward passes. Meanwhile, for ASP systems,
the Vk should be changed from k − p + n to k − p + m.

A strawman stop-and-copy migration approach is to
stop the execution, synchronously transfer parameter ten-
sors and activation tensors, and resume the execution. How-
ever, on training complex DNNs, the tensors to be migrated
can be up to several gigabytes, leading to a long stall.

In VPIPE, we present a live runtime layer migration
protocol. Without losing generality, to ease discussion, Fig. 6
and Fig. 7 shows an example of a forward layer migration in
a four-stage (i.e., p = 4) pipeline, where n = 0 and m = 1.
If Stage n is going to migrate layer c to Stage m after the
ending of input batch k, the migration will work as follows.
In prepare stage, Stage n sends a prepare message to stage
m to inform the migration of layer c. Stage m initializes
the layer module of layer c and moves the module to GPU
memory. Then, stage m sends a ready to stage n.

Once stage n receives ready, the migration immediately
starts in its next forward pass (i.e., forward pass of input
batch k + 4 in Fig. 6). (1) Stage n immediately asyn-
chronously transfers activation tensors for backward pass
of input batch k + 1 (denoted as backward k + 1). (2) After
the next backward pass (i.e., backward k) finishes, stage
n transfers the parameter tensors of layer c (updated by
backward k) to stage m. Stage m will wait for the arrival
of the parameter tensors of layer c and process layer c in

Fig. 7: Realtime nsys/nvprof GPU profiling of a forward
layer migration. Pink blocks are GPU-to-CPU memory copy;
green blocks are CPU-to-GPU memory copy. After migra-
tion, a higher utilization can be visually observed on the
target GPU. We disabled swap to highlight the migration
memory copies.

its next backward pass (i.e., backward k + 1 is processed
in stage m). (3) The subsequent layer c’s activation tensors
created by input batch k + 2, k + 3, ..., k + p − n − 1 (i.e.,
k + 2, k + 3 in Fig. 6) are continuously and asynchronously
copied. VPIPE ensures that the backward k + 2, k + 3, ...,
k+p−n−1 will not start at stage m until their corresponding
activation tensors arrive. When VPIPE is integrated into an
ASP system, VPIPE will transfer the activation tensors and
the corresponding parameter tensors to migrate a layer.

Overall, VPIPE’s live layer migration merely affects
the normal execution as in step (1) and (3), VPIPE asyn-
chronously transferred the activation tensors of migrated
layers, and we verified this by profiling in Fig. 7. To avoid
altering staleness, VPIPE ensures that the V k

fwd remains
consistent when a layer is migrated from stage n to stage m.
In VPIPE, layer migrations can be triggered multiple times
during a triggering of VPIPE’s Algorithm 1 (tens of seconds
in §6.4). In our evaluation, each migration with a non-live
migration approach stalls the pipeline execution by 1.1-6.8s,
while VPIPE’s migration protocol remains live.

5 SYSTEM IMPLEMENTATION

VPIPE’s design leverages the imperative features from Py-
Torch. The current popular deep learning frameworks are
typically based on either imperative or declarative program-
ming. The imperative programs are similar to Python or
C++ programs, which perform computations during the
execution. PyTorch adopts it as the default and only exe-
cution mode. Overall, VPIPE is currently implemented by
modifying 2782 LoC to PyTorch [36]. VPIPE’s design and
implementation is common for all DNN training engines
that follow an imperative programming style. In this sec-
tion, we present three key points to implement VPIPE in
PyTorch: how to support distributed on-demand swap and
recompute; how to migrate layers between stages; how to
implement an NAS process [39], [45] in VPIPE, as there is no
existing literature that describes how to implement an NAS
process in pipeline parallelism.

For the first point, to capture access patterns of tensors,
VPIPE intercepted PyTorch’s activation creation in forward
passes and reuse in backward passes. In PyTorch, an activa-
tion tensor is created and saved to an edge of an automatic
gradient computation (autograd) graph in a data structure
SavedV ariable. VPIPE intercepted the member functions of
SavedV ariable and saved the tensor pointers to VPIPE’s
VTM module (§3). In PyTorch, SavedV ariable can refer to
both a parameter tensor and an activation tensor. VPIPE
distinguished a parameter tensor and an activation tensor

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 10

by assigning each a property upon their initialization (pa-
rameter tensors are initialized during a model initialization,
i.e., module initialization in PyTorch). To precisely predict
when to swap back a tensor, VPIPE’s VTM modules pass the
captured access patterns of tensors to other stages (§4.2).

To support asynchronous and on-demand swap for acti-
vation tensors in PyTorch, VPIPE added a tensor level asyn-
chronous swap feature to PyTorch. PyTorch 1.5.0 currently
only supports a synchronized swap for tensor implementa-
tion (i.e., the main thread will be blocked during the swap).
Moreover, to accelerate the tensor swap from CPU memory
to GPU memory, in VPIPE, we stored the tensors that are
swapped to CPU memory in a pinned memory. The technical
reason is that in PyTorch, CPU memory to GPU memory
copies are much faster when they originate from pinned
(i.e., page-locked) memory. VPIPE used the pin memory()
method for PyTorch’s CPU tensor storage.

VPIPE’s recompute leverages PyTorch’s checkpoint li-
brary, which is a builtin library for recomputing activations.
A major implementation obstacle for on-demand recompute
is to change the training statement at runtime. In VPIPE,
we used python’s builtin feature exec stmt, which takes a
piece of statement as input and executes the statement, to
to modify a stage’s execution statement at runtime and on-
demand decide whether to recompute a layer’s activation.

To support layers migration between stages (thus, a stage
of DNN is dynamic), VPIPE maintains a DNN stage as a
structured graph data and has a simple parser that switches
between the graph description of DNNs and the PyTorch
imperative statement (using exec stmt). Thus, when a layer
migration happens, on the target stage, VPIPE modifies the
graph description, initializes the corresponding layer mod-
ule in PyTorch, overwrite the layer’s state by the migrated
layer’s state, and adds the new layer to the stage’s execution
statement. On the source stage, VPIPE removes the layer
from the stage’s execution statement and delete the layer
from the GPU memory. VPIPE both supports both branches
in among stages and branches among layers.

To support NAS in pipeline parallelism, we imple-
mented the NAS process on both Pipedream and GPipe
(§6.3) based on the official description of the evolved Trans-
former [45] and AmoebaNet [39]. Overall, there are two key
components for a NAS process: an evolution algorithm that
iteratively explores new DNN architectures; and a just-in-
time runtime that switches the training workload according
to DNN generated by the evolution algorithm.

In an evolution algorithm, when a DNN switch occurs,
our NAS implementation deactivates the differed layers
in the existing DNN, activates the new layers, and reset
parameters when a DNN switch finishes. The above im-
plementation leverages PyTorch’s imperative feature (i.e.,
exec stmt) and fast switches between two DNNs without
extra stop and initialization time.

6 EVALUATION

Testbed. Our evaluation was conducted on a GPU farm with
8 hosts. Each host had 4 Nvidia 2080TI GPUs, 20 CPU cores,
and 64 GB RAM. Each GPU had 11 GB physical memory and
was connected to the host with PCIe 3.0 X16 that provided
a total data transfer bandwidth of 15760 MB/s. Hosts are

Task Model Dataset

Image Classification
VGG16 [44] ImageNet [9]

Resnet50 [15] ImageNet [9]
AmoebaNet [39] ImageNet [9]

Translation GNMT [58] WMT16 EN-DE [42]
Transformer [52] WMT16 EN-DE [42]

Language Modeling BERT [10] WMT16 EN-DE [42]

TABLE 1: Models and datasets.

connected with 100 Gbps Ethernet, and the average ping
latency is 0.17ms.
Workloads. We evaluated six well-studied DNN models
(Tab. 1) that are widely used in the deep learning com-
munity. BERT [10], Transformer [52], AmoebaNet [39], and
GNMT [58] are four large DNNs often trained by pipeline
parallelism [19], [33]. Transformer [45] and AmoebaNet [39]
are two typical workloads that have been applied with Neu-
ral Architecture Search. We used the open-source release of
each model.

These models cover all prevalent DNNs evaluated in
existing pipeline parallel systems, including Pipedream [33],
GPipe [19], XPipe [14], and PipeMare [59]. For other models,
including S2VT [53] and AWD LM [31] evaluated in these
systems, they are surpassed by the DNNs we evaluated and
no longer prevalent. We evaluated two well-known datasets:
WMT16 [42] for NLP and ImageNet [9] for vision.
Baselines. We integrated VPIPE to two baseline sys-
tems: the most notable ASP pipeline parallel system
Pipedream [33] and the most notable BSP pipeline parallel
system GPipe [19]. For Pipedream, we used its open-source
release [33]; for GPipe, we implemented GPipe by apply-
ing a strong synchronization barrier (§2) on Pipedream’s
codebase because GPipe has no official release on Py-
Torch. Each integration of VPIPE took only several LoC
changes. For a baseline system (e.g., Pipedream), we used
Pipedream-VPIPE to represent Pipedream integrated with
VPIPE. We compared the throughput of Pipedream-VPIPE
with Pipedream alone to indicate VPIPE’s improvement on
Pipedream. Overall, we evaluated four systems: Pipedream-
VPIPE, GPipe-VPIPE, Pipedream, and GPipe.

There are also successive systems (i.e., XPipe [14] and
PipeMare [59]) that mitigate Pipedream’s parameter stal-
eness. However, all these systems share the same perfor-
mance model as either Pipedream or GPipe.
Batch Size and Training Setup. For all systems, we set
the training batch sizes of each DNN to the largest batch
size that can be supported without exceeding all GPU’s
physical memory limit. As Pipedream directly keeps all
activation tensors in GPU memory, to avoid exceeding GPU
memory limit on the front stages, the training batch size
supported by Pipedream was 3.2x less than other evaluated
systems (e.g., GPipe). For all systems, without specification,
we evaluated them on 8 GPUs and set their default partition
(shown in Tab. 2) by the static partition profiler provided
by Pipedream [33], which is the only system that explicitly
describes a partition scheme. In §6.2, when training with
varied GPUs numbers, the default layer partition was also
produced by Pipedream’s static partition profiler. We also
show the learning rate (l.r.) used by Adam optimizer in
Tab. 2.
Metrics. We used the number of epochs processed per hour
to measure each system’s throughput. An epoch in DNN

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 11

0 10 20
Time (hours)

70

75

80

85
Ac

cu
ra

cy

G(16)
G-V(16)
10th epoch

(a) BERT

0 5 10 15
Time (hours)

22

24

26

BL
EU

 S
co

re

G(128)
G-V(128)
5th epoch

(b) Transformer

0 20 40
Time (hours)

0

20

40

60

80

To
p-

5

G(32)
G-V(32)
20th epoch

(c) AmoebaNet

0 5 10
Time (hours)

20

22

BL
EU

 S
co

re

G(96)
G-V(96)
5th epoch

(d) GNMT

0.0 2.5 5.0 7.5
Time (hours)

0

20

40

60

80

To
p-

5

G(64)
G-V(64)
20th epoch

(e) VGG16

0 2 4
Time (hours)

0

20

40

60

80

To
p-

5

G(64)
G-V(64)
20th epoch

(f) ResNet50

0 20 40
Time (hours)

70

80

90

100

Ac
cu

ra
cy

P(4)
P-V(16)
10th epoch

(g) BERT

0 10 20
Time (hours)

18

20

22

24
BL

EU
 S

co
re

P(32)
P-V(128)
5th epoch

(h) Transformer

0 20 40
Time (hours)

0

20

40

60

80

To
p-

5

P(8)
P-V(32)
20th epoch

(i) AmoebaNet

0 5 10
Time (hours)

20

21

22

23

BL
EU

 S
co

re

P(32)
P-V(96)
5th epoch

(j) GNMT

0 5
Time (hours)

0

25

50

75

100

To
p-

5

P(32)
P-V(64)
20th epoch

(k) VGG16

0 2 4
Time (hours)

0

25

50

75

100

To
p-

5

P(32)
P-V(64)
20th epoch

(l) ResNet50

Fig. 8: Model fitting score vs. time for training six models using 8 GPUs. For a-f, the models are training with GPipe (G)
and GPipe-VPIPE (G+V). For g-l, the models are training with Pipedream (P) and Pipedream-VPIPE (P+V). For BERT,
the score metric is next sentence prediction accuracy [10]. For Transformer and GNMT, the score metric is BLEU [58].
For AmoebaNet, VGG16, and ResNet 50, the score metric is top-5 accuracy [15], [33], [39], [44].

training is a traverse of the whole dataset. In §6.3, we used
the number of data items processed per hour to measure
each system’s throughput because a model may be early-
stopped before finishing one complete epoch.

We defined the ideal throughput as the training
throughput supposing the system is running on GPUs
with unlimited physical memory (also defined in other
systems [18]), and the stage partition of the DNN model can
seamlessly remain balanced. Same as previous work [18],
we implemented the ideal throughput by directly reusing
the GPU memory when out-of-memory exceptions were
triggered.

We used ALU utilization to indicate the usage of GPU
ALUs. We used GPU memory utilization and GPU PCIe
utilization to indicate the GPU memory usage and PCIe
bandwidth usage. Specifically, for GPU ALU utilization, we
used effective ALU utilization to distinguish the effective
ALU utilization that contributes to the training process and
the wasted ALU utilization that are used for recompute.

Our evaluation focuses on the following questions:

§6.1 : How was VPIPE’s efficiency on static DNN training,
compared with the baseline systems?
§6.2 : How was VPIPE’s scalability, compared with the
baseline systems?
§6.3 : How was VPIPE’s efficiency on dynamic DNN train-

ing, compared with the baseline systems?
§6.4 : How effective were VPIPE’s runtime algorithms and
protocol in §4?
§6.5 : What are the limitations of VPIPE?

Model layer # l.r. Default Partition
BERT 488 5× 10−3 [60, 62, 62, 62, 62, 61, 61, 58]
Trans. 332 5× 10−4 [41, 41, 42, 43, 43, 42, 42, 38]
Amoe. 2190 5× 10−5 [283, 238, 238, 238, 238, 286, 237, 432]
GNMT 86 6× 10−2 [11, 12, 11, 10, 8, 9, 13, 12]
VGG16 40 2× 10−2 [22, 18]
ResNet50 175 2× 10−2 [116, 59]

TABLE 2: Default settings of baseline systems. Baseline
systems with VPIPE start with the same default partition.

6.1 Static DNN training (i.e., NAS disabled)

We first give an overview of how much VPIPE improved
Pipedream and GPipe on training all DNNs. Fig. 8 shows
the training curve that indicates how each model’s training
score improves as training time increases. Overall, in Fig. 8,
to finish the same number of training epochs, VPIPE short-
ened the training time of GPipe and Pipedream by 23.5%
and 53.4% on average. Thus, within the same training time,
VPIPE allowed both GPipe and Pipedream to achieve better
model fitting quality.

Fig. 9 shows the throughput of each system under the
same setting as Fig. 8. These results were comparable to
the evaluation results in Pipedream [33] and GPipe [19].
When training the four large DNNs, including BERT, Trans-
former, AmoebaNet, and GNMT, VPIPE improved GPipe
and Pipedream’s throughput by 30.7% and 109.2%. To un-
derstand VPIPE’s improvement on GPipe and Pipedream,
we looked into the runtime statistics of all GPUs, shown
in Tab. 3, and per-GPU memory usage and ALU utilization
when training Transformer in Fig. 10 and Fig. 11.

VPIPE improved Pipedream most between the two base-
line systems on training complex DNNs. In Pipedream,
the front stages easily reached the GPU memory limits, as
these stages needed to keep many more copies of activa-
tion tensors than the rear stages. For example, in Fig. 10,
with Pipedream’s default partition on Transformer, stage 0
consumed on average 10.3GB GPU memory, as itneeded
to hold 8 copies of activation tensors, almost hitting the
memory limit (11GB) of GPU 0; and stage 7 consumed only
4.8GB GPU memory, less than half of a GPU’s capacity.
When training Transformer with 8 GPUs, Pipedream only

BERT Transformer AmoebaNet GNMT16 VGG16 Resnet50
0.0

0.2

0.4

0.6

0.8

5
10
15

G(GPipe)
G-V
P(Pipedream)
P-V
Ideal

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (e

po
ch

/h
r)

Fig. 9: Throughput of four systems with 8 GPU setting.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 12

supported a batch size of 32, and this moderate batch size
failed to fully utilize the GPU ALU units, making all GPUs’
ALU utilization only 42.3% in Fig. 10.

Compared with Pipedream, on training four complex
DNNs, Pipedream-VPIPE supported 3.75x larger batch size
and incurred 2.09x effective ALU utilization (Tab. 3). To
accelerate Pipedream, VPIPE alleviated the memory burdens
of the front stages by swap and recompute and rebalanced
the stages by repartition. In Fig. 10, VPIPE made more swap
and recompute operations on the front stages to reduce the
memory burden. However, as the front stages incurred more
computation overhead to reduce memory, the front stages
took longer execution time, and execution time among
stages was unbalanced.

In Fig. 10, when VPIPE only enabled the swap and
recompute optimization on each local stage (i.e., Pipedream-
VPIPE-SR, denoted as P-V-SR), we observed that although
stage 0-3 had high total ALU utilization (87.6%-95.3%), stage
4-7 incurred low ALU utilization of only (61.4%-81.7%). To
make the pipeline more balanced, in VPIPE’s Algorithm 1,
VPIPE iteratively performed stage repartition that migrated
layers from the front stages to the rear stages. This made the
stage 4-7’ ALU utilization high (89.7%-95.6%) and further
improved the pipeline’s throughput.

VPIPE’s optimization space on GPipe was GPipe’s over-
head of an extra forward pass; in our study, an extra for-
ward pass took 23.8%-36.5% wasted computation on various
DNNs [6], [33], [39], [45], [52] and training settings. When
training complex DNNs on a large number of GPUs (> 8),
GPipe achieved better training efficiency than Pipedream
because as shown in Tab. 3, although GPipe needed to
process an extra forward pass, compared with Pipedream,
GPipe supported 3.75x training batch size and incurred
1.59x total effective ALU utilization on all GPUs. Thus,
VPIPE had more improvement space on Pipedream.

Compared with GPipe, GPipe-VPIPE used 73.2% less
wasted GPU ALU utilization. The reason is that GPipe-
VPIPE invoked swap and provided a dynamic and efficient
strategy to reduce GPipe’s recompute overhead at runtime
(Algorithm. 2). In exchange, GPipe-VPIPE used 7.9x more
PCIe resource than GPipe for swapping. The PCIe resource
was usually spare in GPipe’s default setting except when
network communications was invoked, VPIPE tackled the
PCIe interference between swap and network communi-
cation in §4.2. Moreover, when NAS was enabled, VPIPE
improved GPipe by up to 291.3%, and we discuss it in §6.3.

When training “small” DNNs VGG16 and ResNet50,
VPIPE improved Pipedream and GPipe by merely 5.2%
and 7.3% on average. The reason is that when we
trained the VGG16 and ResNet50, following the setting of
Pipedream [33], we partitioned both VGG16 and ResNet50
into two stages: a stage that contained convolution layers
and a stage that contained fully connected layers. We used
7 GPUs to perform data parallelism on the former stage and
uses 1 GPU to train the latter one. This two-stage setting
limited the optimization space of VPIPE’s SRP algorithm.

We also evaluated the ideal throughput of GPipe and
Pipedream, and both Pipedream-VPIPE and GPipe-VPIPE
incurred a degradation from the ideal throughput. The
reason is that due to limits of GPU memory capacity and
PCIe bandwidth, to support sufficient large batch size that

P-V_effective
P-V_total

P-V-SR_effective
P-V-SR_total

P(Pipedream)

G0 G1 G2 G3 G4 G5 G6 G7
0.0

2.5

5.0

7.5

10.0

M
em

or
y

Us
ag

e
(G

B)

(a) Memory
G0 G1 G2 G3 G4 G5 G6 G7

0

25

50

75

100

AL
U

Ut
iliz

at
io

n
(%

)

(b) ALU Util.

Fig. 10: Resource usage of each GPU when training (NAS-
disabled) Transformer with Pipedream, Pipedream-VPIPE,
Pipedream-VPIPE-SR on 8 GPUs. Unfilled bars are wasted
GPU ALU utilization for recompute.

made all GPU’s ALU units fully utilized, VPIPE incurred
inevitable recompute overhead on the front stage to avoid
exceeding GPU physical memory limit (G1). In total, as
shown in the GPU utilization column of Tab. 3, VPIPE
needed 6.7% inevitable wasted ALU utilization on average
for recompute.

G-V_effective
G-V_total

G-V-SR_effective
G-V-SR_total

G(GPipe)_effective
G_total

G0 G1 G2 G3 G4 G5 G6 G7
0.0

2.5

5.0

7.5

10.0

M
em

or
y

Us
ag

e
(G

B)

(a) Memory
G0 G1 G2 G3 G4 G5 G6 G7

0

20

40

60

80

AL
U

Ut
iliz

at
io

n
(%

)

(b) ALU Util.

Fig. 11: Resource usage of each GPU when training (NAS-
disabled) Transformer with GPipe, GPipe-VPIPE, GPipe-
VPIPE-SR on 8 GPUs. Unfilled bars are wasted GPU ALU
utilization for recompute.

Overall, VPIPE accelerated both Pipedream and GPipe
on various complex DNNs under static training settings.
VPIPE’s improvement stemmed from a higher utilization
rate of all GPU resources, including the effective ALU
utilization, memory, and PCIe usage.

6.2 Scalability
To evaluate whether VPIPE is scalable to large GPU clusters,
we ran Pipedream-VPIPE, GPipe-VPIPE, Pipedream, and
GPipe on different numbers (4-16) of GPU. In addition, an
alternative approach to apply dynamic swap and recompute
systems (i.e., Capuchin [37]) to distributed settings is to
integrate Capuchin to each worker of data parallelism. We
also evaluated Capuchin with data parallelism (parameter
server) on a different number of GPUs. For pipeline par-
allelism, the motivation of using larger GPU clusters is
often to train larger DNNs [19]. Thus, we made the DNN
layer number proportional to the number of involved GPUs
(e.g., DNNs used for 16 GPU setting had doubled layers
comparing with DNNs used for 8 GPU setting). In Fig. 12,
we used the total effective utilization of all GPUs to evaluate
the scalability.

Pipedream achieved poor scalability. In pipeline paral-
lelism, the number of simultaneously injected input batches
are proportional to the GPU (Stage) number (§2.2); as

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 13

Model Sco. Bat. GPU Mem. PCIe fwd bwd Sco. Bat. GPU Mem. PCIe fwd bwd

BE. G+V 96.7% 16 6.4x/6.9x 6.8x 6.0x 0.45 0.76 P+V 98.1% 16 7.0x/7.6x 7.0x 6.3x 0.45 0.75
G 96.8% 16 4.6x/6.8x 4.2x 0.8x 0.44 1.15 P 98.0% 4 2.7x/2.7x 5.5x 0.5x 0.29 0.48

TR. G+V 26.4 128 6.3x/6.7x 6.8x 5.9x 0.51 0.96 P+V 24.3 128 6.9x/7.4x 6.9x 6x 0.53 0.97
G 26.4 128 4.8x/6.6x 4.4x 0.8x 0.52 1.40 P 24.2 32 3.4x/3.4x 4.7x 0.4x 0.31 0.54

AM. G+V 80.9% 32 6.0x/6.5x 7.1x 7.0x 1.05 2.03 P+V 83.4% 32 6.6x/7.3x 7.4x 7.3x 1.06 2.07
G 80.8% 32 4.7x/6.6x 3.9x 1.0x 1.02 2.82 P 83.4% 8 2.9x/2.9x 6.3x 1.1x 0.51 0.97

GN. G+V 24.3 96 5.8x/6.2x 5.8x 5.6x 2.39 4.59 P+V 23.1 96 6.5x/6.9x 6.1x 5.9x 2.38 4.62
G 24.3 96 4.5x/6.3x 3.9x 0.4x 2.37 6.58 P 23.2 32 2.5x/2.5x 3.9x 0.3x 1.91 3.42

TABLE 3: Resource consumption, final fitting scores, and micro events of training four large DNNs with four systems on
8 GPUs. BE. is BERT. TR. is Transformer. AM. is AmoebaNet. GN. is GNMT. Sco. is the final model fitting score when
the training finishes, and score metric of each model is the same as Fig. 8. Bat. is training batch size. GPU is all GPUs’
effective/total ALU utilization. Fwd and bwd mean forward pass time and backward pass time of each training iteration.

Pipedream directly keeps activation tensors in GPU mem-
ory, an increasing GPU number makes the number of acti-
vation tensors kept by a single GPU (with a fixed memory)
also increased. To avoid exceeding GPU memory limit,
Pipedream needed to proportionally decrease the size of
each input batch. For example, when training Transformer
with 8 GPUs, the batch size supported by Pipedream was
32; when training Transformer with 16 GPUs, the batch size
supported by Pipedream dropped to 16.

A larger training batch size can lead to higher GPU ALU
utilization [60]; however, in the settings of Fig. 12, the batch
size supported by Pipedream were often not high enough
to fully utilize a GPU’s ALU units. Therefore, when more
GPUs were involved in Pipedream, the total effective ALU
utilization increased little and even dropped when training
AmoebaNet, as the batch size dropped to a very low num-
ber (e.g., 1 when training with 16 GPUs) and the parallel
utilization of ALUs on all GPUs dropped significantly.

Compared with Pipedream, Pipedream-VPIPE, GPipe-
VPIPE, and GPipe did not suffer from batch size degrada-
tion when more GPUs were involved. GPipe used all −
recompute strategy without keeping any activation tensors
in GPU memory, and thus supported a sufficiently large
batch size to fully utilize a GPU’s ALU units. With VPIPE
integrated, Pipedream-VPIPE and GPipe-VPIPE supported
the same large batch size as GPipe, while VPIPE reduced
the recompute overhead in GPipe. Thus, Pipedream-VPIPE
and GPipe-VPIPE were as scalable as GPipe and achieved
better total effective utilization than GPipe.

G-V
G

P
P-V

DP-C
DP

4 GPUs 8 GPUs 12 GPUs 16 GPUs

250

500

750

1000

Ef
fe

ct
iv

e
AL

U
Ut

iliz
at

io
n

(%
)

(a) BERT
4 GPUs 8 GPUs 12 GPUs 16 GPUs

250

500

750

1000

Ef
fe

ct
iv

e
AL

U
Ut

iliz
at

io
n

(%
)

(b) Transformer

4 GPUs 8 GPUs 12 GPUs 16 GPUs

250

500

750

1000

Ef
fe

ct
iv

e
AL

U
Ut

iliz
at

io
n

(%
)

(c) Amoebanet
4 GPUs 8 GPUs 12 GPUs 16 GPUs

200

400

600

800

1000

Ef
fe

ct
iv

e
AL

U
Ut

iliz
at

io
n

(%
)

(d) GNMT

Fig. 12: Scalability. DP means pure data parallelism. DP-C
means data parallelism + Capuchin [37].

For both vanilla data parallelism (DP) and Capuchin
with data parallelism (DP-C), the scalability was poor be-
cause for complex DNNs, the network communication cost
for parameter synchronization was the major bottleneck
(§2). However, DP-C still incurred better effective ALU uti-
lization as Capuchin used swap and recompute to enlarge
the training batch size supported by each GPU, making a
high ALU utilization on each GPU worker.

To sum, with VPIPE, both BSP (GPipe-VPIPE) and ASP
(Pipedream-VPIPE) systems achieved almost linear scalabil-
ity that is comparable to the scalable pipeline parallelism
system GPipe, while VPIPE achieved better total effective
GPU utilization. These results indicate that VPIPE is both
efficient and scalable. As the emergence of more giant DNNs
can be foreseen [6], the design of VPIPE is able to remain
efficient when more and more GPUs are involved.

6.3 Dynamic DNN training (i.e., NAS enabled)

To evaluate VPIPE’s efficiency on dynamic training work-
load, we conducted a case study of how VPIPE performed
on neural architecture search (NAS), one of the most preva-
lent dynamic training processes. We selected two models
(Transformer [52] and AmoebaNet [39]) that have been
pervasively used for neural architecture search. For both
Transformer and AmoebaNet, we implemented the NAS
process according to their published description [45] of an
evolution algorithm: it creates a set of population DNN
models, which have a similar architecture, and train them
on a subset (around 1000 data entries) of their Dataset to
fast eliminate those unqualified models. This elimination
process often took the most time during a NAS process.
To ensure fair evaluation, we made the evolution algorithm
deterministic: i.e., for each NAS process, the population of
models was trained in a determined sequence.

Overall, VPIPE accelerated both GPipe and Pipedream
on these two NAS-enabled DNN training by 245.4%-291.3%
and 421.3%-463.4%, while VPIPE made no impacts on the
upper evolutionary algorithm and did not downgrade the
quality of NAS.

We selected a snippet for each NAS-enabled model
(Transformer and AmoebaNet) training on two baseline
systems (Pipedream and GPipe), and Fig. 13 shows how
VPIPE improved both two systems on NAS-enabled model
training. In Fig. 13a and Fig. 13b, 8 layers were added twice
at 342s and 594s on the first stage, and 8 layers were deleted
twice at 880s and 1123s on the second stage. In Fig. 14b and
Fig. 14b, 46 layers were deleted twice at 921s and 1157s on

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 14

(a)

(b)
Fig. 13: Training profiling under dynamic training processes (Evolved Transformer). V-SR means VPIPE with
swap/recompute enabled and repartition disabled. In all sub-figures of (a) and (b), the 1st is training throughput collected
at every input batch finished; the 2nd is real-time layer number of each stage (red means layer increase; blue means layer
decrease); the 3rd and 4th are the resource utilizations of all GPUs at the end of each sub-figure’s time axis.

the first stage, and 46 layers were added twice at 1265s and
1483s on the second stage.

For vanilla baseline systems without VPIPE (Pipedream
and GPipe), the static partition strategy used by both sys-
tems did not cope with this training dynamicity: taken the
Transformer in Fig. 13a and Fig. 13b as an example, when
layers were added on the first stage, both systems incurred a
performance drop as the execution time of stage 0 suddenly
increased, bottlenecking the whole pipeline; when layers
were deleted on the second stage, the whole pipeline’s
throughput did not increase as the stage 0 was still the
throughput bottleneck. In Fig. 13a and Fig. 13b, although
the ALU utilization of stage 0 was high, other stages all
incurred a low ALU utilization as these stages often needed
to wait for the execution of stage 0.

When only VPIPE’s local swap and recompute opti-
mization (Algorithm 2) on each stage (i.e., VPIPE-SR) was
enabled, although VPIPE-SR improved the two baseline
systems’ throughput by enlarging the supported batch size
(for Pipedream) or reducing the recompute overhead (for
GPipe), VPIPE-SR was also not able to cope with this
training dynamicity. This implies that existing single GPU
swap and recompute systems (e.g., Capuchin [37]) are not
sufficient to achieved efficient pipeline parallelism in two
folds: first, these systems do not support distributed mem-
ory management (§4.2); second, even if a distributed swap
and recompute system (e.g., VPIPE-SR) exists, it still incurs
sub-optimal training efficiency.

In contrast, when VPIPE with a full implementation of
Algorithm 1 was integrated into Pipedream and GPipe,
under training dynamicity, both systems (Pipedream-VPIPE
and GPipe-VPIPE) adjusted its layer distribution on all
stages to achieve a near-optimal training throughput.
In Fig. 13, the second figure of each sub-figure shows
how VPIPE adjusted the layer distribution when layer
activation/de-activation was suddenly triggered during a
training process. For example, when layers were added
on stage 0 at the 342s in Fig. 13a and Fig. 13b, VPIPE’s
global planner collected the runtime statistics of all stages
and noticed an imbalance of execution time among stages.
VPIPE then triggered Algorithm 3 to generate a new bal-

anced partition. VPIPE’s layer manager immediately started
to migrate layers from stage 0 to the subsequential stages
(i.e., stage 3, 5, and 6). Then, VPIPE’s layer manager locally
performed Algorithm 2 to find an optimized local memory
management plan. After that, as described in Algorithm 1,
VPIPE iteratively performed Algorithm 3 and Algorithm 2
until no better SRP strategy was found.

In our evaluation, each iterative process of Algorithm 1
finished within 3-9 iterations (§6.1) without performance
downgrade thanks to VPIPE’s fast SRP algorithm and live
layer migration protocol. We will further discuss this in §6.3.
We also evaluated the ideal throughput in Fig. 13, and VPIPE
incurred a degradation from the ideal throughput for the
same reason as we discussed in §6.1.

To sum, with VPIPE, both Pipedream-VPIPE and GPipe-
VPIPE transparently changed their layer distribution along
with the training dynamicity; and by doing so, both systems
kept their training throughput close to the ideal throughput
during an extremely dynamic training. Both forward and
backward layer migrations were triggered frequently during
a NAS training process, making both VPIPE’s forward and
backward layer migration designs desirable.

6.4 Effectiveness of VPIPE’s algorithms
Effectiveness of VPIPE’s SRP algorithm. VPIPE’s SRP al-
gorithm (Algorithm 1) is a decomposition method that
iteratively optimizes two sub-problems: a local search of
swap and recompute (Algorithm 2); and a global search of
stage partition (Algorithm 3).

Models K-L vPipe
O. G(N, E) time(iter) cost C. G(N, E) time(iter) cost

BERT (976,1262) 23.70s (5) 0.37 (124, 137) 2.15s (5) 0.37
Trans. (662, 830) 21.18s (6) 0.74 (108, 146) 1.74s (6) 0.74
Amoe. (4380, 5080) 61.82s (4) 5.64 (132, 142) 1.84s (4) 5.64
GNMT (190, 228) 3.71s (5) 0.71 (46, 52) 0.75s (5) 0.71

TABLE 4: Performance of VPIPE’s partition algorithm v.s.
Kernighan-Lin algorithm [50]. O. G means the original
graph with N layers and E edges. C. G means coarsened
graph. Cost means the network communication cost caused
by the partition algorithm (1e7 bytes per training sample).
Each DNN models used is for 16 GPU training, and the
algorithms partition each DNN into 16 stages.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 15

(a)

(b)
Fig. 14: Training profiling under dynamic training processes (AmoebaNet) with the same setting in Fig. 13.

We first summarize how VPIPE’s SRP algorithm im-
proved the baseline systems. For both static training pro-
cesses (§6.1) and dynamic training processes (§6.3), VPIPE
made the training throughput of both Pipedream and
GPipe always close to ideal throughput; VPIPE’s throughput
degradation from the ideal throughput was caused by the
inevitable recompute overhead to make all GPU’s total
effective ALU utilization high (e.g., Fig. 10 and Fig. 11).
From Tab. 3, compared with bare-metal baseline systems
Pipedream and GPipe, VPIPE’s SRP algorithm essentially
well utilized all available resources of all GPUs.

We then examined how fast VPIPE’s SRP algorithm was.
Overall, each invoking of SRP algorithm finished within 10
iterations. The major time cost of each iteration is taken
by the graph partition sub-algorithm (Algorithm 3), which
solves the NP-hard graph partitioning problem (§4.1). In
Tab. 4, we compared the runtime cost of VPIPE’s partition
algorithm (Algorithm 3) with the original KL-algorithm [50]
on partitioning four complex DNNs. The results show that
VPIPE speeded up the KL algorithm by 4x-32x. The reason
is that VPIPE’s coarsen step greatly reduced the complexity
of the graph used in the partitioning (§4.2). On average,
VPIPE reduced the number of graph nodes by 3x-32x and
the number of graph edges by 3x-35x. This time cost is neg-
ligible comparing with the training time. The final edge cuts
(i.e., total network communication costs across partitions)
produced by VPIPE and KL algorithm were equal, as VPIPE
used KL-refinement to ensure that no better partition on the
original graph was missed.

In Fig. 15a, we collected the network communication
costs of Pipedream-VPIPE and Pipedream using the same

BE. TR. AM. GN.
0.0

0.2

0.4

0.6

0.8

5
6

1e7
P
P-V

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

By
te

s c
om

m
un

ica
te

d
pe

r t
ra

in
in

g
sa

m
pl

e

(a)

60 80 100
Time (seconds)

0

200

400

Ef
fe

ct
iv

e
AL

U
Ut

iliz
at

io
n

(%
)

(b)
Fig. 15: (a) Network usage of Pipedream with and without
VPIPE. VPIPE’s network usage contains VPIPE’s network
overhead (in unfilled red bars) including layer migration
and control message costs. (b) Real time GPU ALU utiliza-
tion statistics with VPIPE’s live migration and the non-live
migration approach.

setting in Fig. 9. Overall, Pipedream-VPIPE achieved compa-
rable network communication costs with Pipedream when
training the four complex DNNs. VPIPE’s layer migration
costs and control message costs incurred little overhead as
the these costs were amortized over the long training time
(up to hundreds of hours). During a layer migration process,
VPIPE’s peak data transfer rate was about 432MB/s, far
from blocking both the network connection and the PCIe
connection across stages.

To sum, these results indicate that VPIPE’s SRP algorithm
is both fast converging and can achieve a near-optimal
plan that well utilizes all GPU resources to achieve efficient
pipeline parallel training.

Effectiveness of live layer migration protocol. VPIPE’s
live layer migration protocol 4.3 transparently migrates a
layer to realize a new partition without degrading the train-
ing throughput. This guarantees that VPIPE can iteratively
search for a better SRP plan (§4.2) with a negligible training
performance penalty.

To examine the necessity of VPIPE’s live layer migration
protocol, we compared it with a non-live layer migration
approach (§4.2): stop injecting new input batches for the
upper system, clean up the pipeline, manually migrate the
layer to a new stage, and reboot a new pipeline. In Fig. 13,
the red dashed line is the training throughput using a
non-live layer migration. The non-live migration degraded
the training throughput by up to 60.3% because, in each
iteration of VPIPE’s Algorithm 1, a repartition would be
triggered, and the pipeline would be cleaned up. Fig. 15b
shows the real-time ALU utilization comparison between
VPIPE’s live migration approach and the non-live migration
approach, during an iterative Algorithm 1 that triggers 9
stage repartition. In each repartition, the total ALU uti-
lization dropped to zero as the pipeline was clean up. In
comparison, VPIPE live-migrated a layer without notable
throughput degradation and GPU stall.

6.5 Discussions

VPIPE has two limitations. First, VPIPE assumes that for any
DNN workload trained with VPIPE, a single layer fits within
the memory limits of a single GPU. This is also assumed
by other pipeline parallel systems (e.g., Pipedream and
GPipe). In reality, for all recent complex DNNs evaluated
by VPIPE, the layers can all fit in a single GPU. Second,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 16

VPIPE’s layer migration protocol (§4.3) remains live when
the time cost of transferring a layer’s tensors can overlap
with the computation time of DNN training. There might
exist special DNNs where the execution time of all layers
is extremely short, while a layer holds a non-negligible
amount of data to transfer. In all the models we studied
and literature, DNNs are both computation intensive and
memory intensive [18], [37], making VPIPE’s off-the-critical-
path data transfer realizable, verified in §6.4.

In future work, we envision three applications of VPIPE.
First, VPIPE has the unique strength to support more dy-
namic training paradigms (e.g., DyNet [34]) other than
NAS, as DyNet enabled dynamic DNNs (e.g., LSTM [31])
are prevalent and powerful in handling input data with
varying lengths (e.g., sentences). Second, existing NAS al-
gorithms produce DNN evolvement with the assumption
that GPU memory is unlimited. However, when these NAS
algorithms are deployed with pipeline parallelism, they
may produce DNN evolvements that cannot be realized
with pipeline parallelism, leading to poor search quality.
Leveraging VPIPE’s pipeline statistics, researchers can let
NAS algorithms be aware of the underlying pipeline re-
sources, making NAS both highly accurate and feasible un-
der limited hardware resources. Third, as DNNs today are
deployed with various training framework, in addition to
PyTorch, VPIPE can also augment other imperative training
engines (e.g., MxNet [8] and Tensorflow [1]).

7 RELATED WORK

Data parallel systems. Data parallelism [28] has been
widely adopted in DNN training to support large batch size
training. In data parallelism, inputs are partitioned across
workers. Each worker maintains a local copy of the model
parameters and trains on its own partition of inputs while
periodically synchronizing weights with other workers.
Typical data parallelism systems assume that a DNN model
can fit into a single GPU. Nevertheless, the size of recent
DNNs has grown far beyond a single GPU’s capacity, driv-
ing researchers to conduct studies [19], [21] on model paral-
lelism. To support large DNN training with data parallelism,
DeepSpeed [38] partitions a DNN’s status of parameters
and optimizers to each worker, and on-demand transfers the
status during the training. DeepSpeed [38] reported a 1.5x
network communication volume compared with a typical
data parallel system (e.g., Parameter Server). Compared
with data parallelism, pipeline parallelism (e.g., VPIPE) in-
curs much less network communication volume [19], [33]
and better scalability during large DNN training [19] (see
§6.2). Overall, data parallelism is complementary to pipeline
parallelism systems and can be integrated to VPIPE as mixed
parallelism to support large batch size training.
Pipeline parallel systems. Pipeline (model) parallelism is
a special type of model parallel system. Model parallel sys-
tems are designed to train complex DNN models that cannot
fit into a single GPU’s memory. Despite Pipedream [33]
and GPipe [19], there are many successive pipeline parallel
systems that try to address Pipedream’s parameter staleness
problem. XPipe [14] uses parameter prediction to mitigate
the staleness issues incurred by the ASP pipeline parallel
systems (i.e., Pipedream). XPipe directly keeps the activa-
tion memories in GPU and have the same performance

model as Pipedream. PipeMare [59] adopts the GPipe’s all
recompute strategy to ASP systems and has a similar model
to GPipe’s performance and memory. However, PipeMare
shares the same limitations as GPipe.
Hybrid parallel systems. Existing pipeline parallel sys-
tems [14], [19], [33], [59] assume that GPU resource con-
sumptions of layers are roughly evenly distributed. In most
recent large DNNs like Transformer [52], BERT [10], GPT-
3 [6], AmoebaNet [39], DNN layers are usually homogenous
and even in training resource consumption. Nevertheless,
in some DNNs like ResNet50 [15] and VGG16 [44], con-
volution layers usually take much more computation time
than the fully connected layers. Hybrid parallelism systems,
including OWT [26], FlexFlow [30], etc, are designed to
improve the training efficiency of such heterogenous DNNs.
Specifically, these systems apply data parallelism to convo-
lution layers and apply model parallelism to fully connected
layers. These systems are orthogonal to VPIPE, and we leave
the support of hybrid parallelism as VPIPE’s future work.
Training memory reduction. DNN training is memory in-
tensive. Training memory reduction has been widely stud-
ied by existing work [18], [37]. Existing memory reduc-
tion approaches mainly fall into two categories: transpar-
ent approaches including swap [18] and recompute [37]
that do not affect the training accuracy; and opaque ap-
proaches such as low precision training [20] and mixed-
precision training that trade-off training accuracy with train-
ing memory. VPIPE aims to act as a transparent layer so
that VPIPE’s memory reduction will not affect the upper
systems. Thus, opaque memory reduction approaches are
orthogonal to VPIPE. There are many transparent memory
reduction systems that are designed for single GPU training.
vDNN [40] and SwapAdvisor [18] focus only on swap.
SuperNeuron [56] and Capuchin [37] coherently combine
swap and recompute to dynamically reduce the memory
consumption of DNN training on a single GPU. However,
these single GPU systems are not designed to cope with
challenges stemming from pipeline parallelism (§2). A re-
cent study [54] partially offloads the recompute overhead to
the CPU processors. This work is complementary to VPIPE
and can be integrated into VPIPE to further reduce the
recompute overhead.

Nvidia proposes Unified Memory [51], a general unified
memory address space accessible from both CPU and GPU,
so that a process can allocate a memory space larger than
a GPU’s physical capacity. Nvidia Zero-Copy [61] allows
integrated GPU (GPU and CPU physically share mem-
ory devices, common in mobile devices) to directly access
pinned memory on CPU. VPipe focuses on discrete GPUs
(GPU has its own memory devices) in data centers. If a
training process exceeds a GPU’s physical capacity, Unified
Memory automatically migrates tensors (e.g., activations)
from GPU to CPU. When these tensors are accessed later
by the GPU ALUs, Unified Memory page fault is triggered,
and tensors needed are synchronously moved back from
CPU to GPU. Such per-host on-demand moving back sig-
nificantly blocks a Deep Learning application’s execution
(e.g., Unified Memory can slow down a DNN’s execution by
more than 1x [5]). Compared with Unified Memory, VPIPE’s
distributed runtime (§4.2) enables VPIPE to predict when
tensors in CPU will be needed and asynchronously pre-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 17

fetches these tensors back to GPU before they are accessed,
which prevents blocking the normal execution; VPIPE’s
async swap has an overall negligible overhead on the train-
ing performance (§4.2). Besides swap, VPIPE’s distributed
memory management also contains features like recompute
and migrate.

8 CONCLUSION

In this paper, we present VPIPE, the first dynamic mem-
ory and layer partition management system for pipelined
parallelism, acting as a virtualized layer between a typical
pipeline parallel system and its underlying execution en-
gine. VPIPE can accelerate existing pipeline parallel systems
under both static and dynamic training of complex DNNs,
making them both efficient and scalable. VPIPE’s source
code is released at: github.com/hku-systems/vpipe.

ACKNOWLEDGMENTS

We thank all reviewers for their valuable comments. The
work is funded by grants partly from the Huawei Inno-
vation Research Program (HIRP) Flagship, HK RGC ECS
No.27200916, HK RGC GRF No.17207117, No. 17202318, No.
27208720, Croucher Innovation Award, National NSF China
No.61802358, and USTC Research Funds of the Double First-
Class Initiative, No. YD2150002006.

REFERENCES

[1] M. Abadi, P. Barham, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pp. 265–283. 2016.

[2] S. Areibi. An integrated genetic algorithm with dynamic hill
climbing for vlsi circuit partitioning. In GECCO 2000, pp. 97–102.
2000.

[3] S. Areibi and A. Vannelli. Distributed advanced search tech-
niques for circuit partitioning. In Conference Proceedings. IEEE
Canadian Conference on Electrical and Computer Engineering (Cat. No.
98TH8341), vol. 2, pp. 553–556. IEEE, 1998.

[4] PyTorch cuda streams. https://pytorch.org/docs/stable/notes/
cuda.html#cuda-streams.

[5] Z. Bai, Z. Zhang, et al. Pipeswitch: Fast pipelined context switch-
ing for deep learning applications. In 14th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 20), pp.
499–514. 2020.

[6] T. B. Brown, B. Mann, et al. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165, 2020.

[7] T. N. Bui and C. Jones. A heuristic for reducing fill-in in sparse
matrix factorization. Tech. rep., Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA , 1993.

[8] T. Chen, M. Li, et al. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274, 2015.

[9] J. Deng, W. Dong, et al. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

[10] J. Devlin, M.-W. Chang, et al. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[11] S. Dutt. New faster kernighan-lin-type graph-partitioning algo-
rithms. In Proceedings of 1993 International Conference on Computer
Aided Design (ICCAD), pp. 370–377. IEEE, 1993.

[12] C. Farhat, E. Wilson, et al. Solution of finite element systems
on concurrent processing computers. Engineering with Computers,
2(3):157–165, 1987.

[13] P.-O. Fjällström. Algorithms for graph partitioning: A survey, vol. 3.
Linköping University Electronic Press Linköping, 1998.

[14] L. Guan, W. Yin, et al. Xpipe: Efficient pipeline model parallelism
for multi-gpu dnn training. arXiv preprint arXiv:1911.04610, 2019.

[15] K. He, X. Zhang, et al. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778. 2016.

[16] M. T. Heath and P. Raghavan. A cartesian parallel nested dissec-
tion algorithm. SIAM Journal on Matrix Analysis and Applications,
16(1):235–253, 1995.

[17] B. Hendrickson and R. W. Leland. A multi-level algorithm for
partitioning graphs.

[18] C.-C. Huang, G. Jin, et al. Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 1341–1355.
2020.

[19] Y. Huang, Y. Cheng, et al. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. In Advances in neural
information processing systems, pp. 103–112. 2019.

[20] I. Hubara, M. Courbariaux, et al. Quantized neural networks:
Training neural networks with low precision weights and activa-
tions. The Journal of Machine Learning Research, 18(1):6869–6898,
2017.

[21] Z. Jia, M. Zaharia, et al. Beyond data and model parallelism for
deep neural networks. arXiv preprint arXiv:1807.05358, 2018.

[22] J. A. Joao, M. A. Suleman, et al. Bottleneck identification and
scheduling in multithreaded applications. ACM SIGARCH Com-
puter Architecture News, 40(1):223–234, 2012.

[23] G. Karypis and V. Kumar. Multilevel graph partitioning schemes.
[24] —. Analysis of multilevel graph partitioning. In Supercomput-

ing’95: Proceedings of the 1995 ACM/IEEE conference on Supercom-
puting, pp. 29–29. IEEE, 1995.

[25] B. W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. The Bell system technical journal, 49(2):291–307,
1970.

[26] A. Krizhevsky. One weird trick for parallelizing convolutional
neural networks. arXiv:1404.5997, 2014.

[27] C.-H. Lee, M. Kim, et al. An efficient k-way graph partitioning
algorithm for task allocation in parallel computing systems. In
Systems Integration’90. Proceedings of the First International Confer-
ence on Systems Integration, pp. 748–751. IEEE, 1990.

[28] M. Li, D. G. Andersen, et al. Scaling distributed machine learning
with the parameter server. In 11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14), pp. 583–
598. 2014.

[29] W. Liu, Z. Wang, et al. A survey of deep neural network architec-
tures and their applications. Neurocomputing, 234:11–26, 2017.

[30] W. Lu, G. Yan, et al. Flexflow: A flexible dataflow accelerator
architecture for convolutional neural networks. In 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pp. 553–564. IEEE, 2017.

[31] S. Merity, N. S. Keskar, et al. Regularizing and optimizing lstm
language models. arXiv preprint arXiv:1708.02182, 2017.

[32] J. M. Mulvey and A. Ruszczyński. A new scenario decomposition
method for large-scale stochastic optimization. Operations research,
43(3):477–490, 1995.

[33] D. Narayanan, A. Harlap, et al. Pipedream: generalized pipeline
parallelism for dnn training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pp. 1–15. 2019.

[34] G. Neubig, C. Dyer, et al. Dynet: The dynamic neural network
toolkit. arXiv:1701.03980, 2017.

[35] D. Nicoara, S. Kamali, et al. Hermes: Dynamic partitioning for
distributed social network graph databases. In EDBT, pp. 25–36.
2015.

[36] A. Paszke, S. Gross, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural informa-
tion processing systems, pp. 8026–8037. 2019.

[37] X. Peng, X. Shi, et al. Capuchin: Tensor-based gpu memory
management for deep learning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 891–905. 2020.

[38] S. Rajbhandari, J. Rasley, et al. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–16. IEEE, 2020.

[39] E. Real, A. Aggarwal, et al. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference
on artificial intelligence, vol. 33, pp. 4780–4789. 2019.

[40] M. Rhu, N. Gimelshein, et al. vdnn: Virtualized deep neural
networks for scalable, memory-efficient neural network design. In
2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 1–13. IEEE, 2016.

github.com/hku-systems/vpipe

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, NOVEMBER 2021 18

[41] I. Safro, P. Sanders, et al. Advanced coarsening schemes for graph
partitioning. Journal of Experimental Algorithmics (JEA), 19:1–24,
2015.

[42] R. Sennrich, B. Haddow, et al. Edinburgh neural machine transla-
tion systems for wmt 16. arXiv preprint arXiv:1606.02891, 2016.

[43] A. Sergeev and M. Del Balso. Horovod: fast and easy distributed
deep learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[44] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[45] D. R. So, C. Liang, et al. The evolved transformer. arXiv preprint
arXiv:1901.11117, 2019.

[46] E. Strubell, A. Ganesh, et al. Energy and policy considerations for
deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

[47] Y. Sun, M. Kirley, et al. A recursive decomposition method
for large scale continuous optimization. IEEE Transactions on
Evolutionary Computation, 22(5):647–661, 2017.

[48] S. Teng. Unified geometric approach to graph separators.

[49] F. Teraoka, Y. Yokore, et al. A network architecture providing
host migration transparency. In Proceedings of the conference on
Communications architecture & protocols, pp. 209–220. 1991.

[50] J. L. Träff. Direct graph k-partitioning with a kernighan–lin like
heuristic. Operations Research Letters, 34(6):621–629, 2006.

[51] Nvidia Unified Memory. https://developer.nvidia.com/blog/
unified-memory-cuda-beginners/.

[52] A. Vaswani, N. Shazeer, et al. Attention is all you need. In Advances
in neural information processing systems, pp. 5998–6008. 2017.

[53] S. Venugopalan, M. Rohrbach, et al. Sequence to sequence-video
to text. In Proceedings of the IEEE international conference on computer
vision, pp. 4534–4542. 2015.

[54] M. Wahib, H. Zhang, et al. Scaling distributed deep learning work-
loads beyond the memory capacity with karma. arXiv:2008.11421,
2020.

[55] L. Wang, S. Xie, et al. Sample-efficient neural architecture search
by learning action space. arXiv preprint arXiv:1906.06832, 2019.

[56] L. Wang, J. Ye, et al. Superneurons: Dynamic gpu memory
management for training deep neural networks. In Proceedings
of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 41–53. 2018.

[57] L. Wang, Y. Zhao, et al. Alphax: exploring neural architectures
with deep neural networks and monte carlo tree search. arXiv
preprint arXiv:1903.11059, 2019.

[58] Y. Wu, M. Schuster, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

[59] B. Yang, J. Zhang, et al. Pipemare: Asynchronous pipeline parallel
dnn training. arXiv preprint arXiv:1910.05124, 2019.

[60] E. Yang, S.-H. Kim, et al. An adaptive batch-orchestration al-
gorithm for the heterogeneous gpu cluster environment in dis-
tributed deep learning system. In 2018 IEEE International Confer-
ence on Big Data and Smart Computing (BigComp), pp. 725–728. IEEE,
2018.

[61] Nvidia CUDA Zero-Copy. https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html#zero-copy.

[62] Y. Zhao, L. Wang, et al. Few-shot neural architecture search. arXiv
preprint arXiv:2006.06863, 2020.

Shixiong Zhao received his Bachelor degree in HKU
and his master degree in HKUST. He is currently a PhD
student in Computer Science of HKU. He is under the
supervision of Prof. Heming Cui. His research interests
include distributed systems for high performance com-
puting.

Fanxin Li received the BE degree from Xi’an Jiaotong
University in 2019. He is currently working toward the
PhD degree at HKU. His research interests include
distributed machine learning and cloud computing.

Jianyu Jiang is currently a third year Ph.D. student
in Computer Science Department at The University of
Hong Kong. He is working on topics in large scale com-
putation platform under the supervision of Prof. Heming
Cui. Prior to his current program, Jianyu receive his
Bachelor’s Degree in Computer Science Department at
Xi’an Jiaotong University.

Yuhao Qing is currently a undergraduate student in
Computer Science at City University of Hong Kong. His
research interests includes machine learning systems
and cloud computing.

Dong Huang is now a senior undergraduate at
Huazhong University of Science and Technology. His
research interests are federated learning and system
security.

Xusheng Chen received his Bachelor degree in
HKU. He is currently a Ph.D. student in Computer
Science of HKU. He is under the supervision of Prof.
Heming Cui. His research interests include distributed
consensus protocols, distributed systems and system
security.

Sen Wang received the B.S. degree from USTC in
2005, the M.S. degree from the Chinese Academy
of Sciences (CAS) in 2008, and the Ph.D. degree
from Tsinghua University in 2014. From 2014 to 2019,
he was a lecturer and then an associate professor
at Chongqing University. Currently, he is a senior re-
searcher at Huawei, Hongkong. His research inter-
ests include information-centric networking, Federated
Learning and AI for System.

Peng Wang received a Ph.D. in Department of Com-
puter Science, City University of Hong Kong. He re-
ceived the B.S. degree in information engineering from
Xidian University in 2013. His research interests include
data center networking and cloud computing. He re-
ceived the best paper award from ACM CoNEXT Stu-
dent Workshop 2014.

Gong Zhang is a chief architect researcher scientist,
director of the Huawei Future Network Theory Lab.
His major research directions are network architecture
and large-scale distributed systems. He has abundant
experience on system architect in networks, distributed
system and communication system for more than 20
years. He has more than 90 global patents.

Cheng Li received the Ph.D. degree from the Saar-
land University/Max Planck Institute for Software Sys-
tems, Germany, in 2016. He has been a pre-tenure
professor with the Department of Computer Science
and Technology, University of Science and Technology
of China since Fall 2017. His research interests lie in
various topics related to improving performance, con-
sistency, fault tolerance, and availability of distributed
systems.

Ping Luo is an Assistant Professor in the depart-
ment of Computer Science, HKU. He received his Ph.D.
degree in 2014 from Information Engineering, CUHK,
supervised by Prof. Xiaoou Tang and Prof. Xiaogang
Wang. He was a Postdoctoral Fellow in CUHK from
2014 to 2016. He joined SenseTime Research as a
Principal Research Scientist from 2017 to 2018. His
research interests are machine learning and computer
vision.

Heming Cui is an Associate Professor in Computer
Science of HKU. His research interests include op-
erating systems, programming languages, distributed
systems, and cloud computing, with a particular focus
on building software infrastructures and tools to improve
reliability and security of real-world software. He is a
member of IEEE.

	Introduction
	Background
	DNN Training
	Pipeline Parallel DNN Training
	Dynamic DNN Training

	vPipe's Architecture
	vPipe's Runtime
	Problem modeling
	Swap, Recompute, and Repartition
	Live Layer Migration

	System Implementation
	Evaluation
	Static DNN training (i.e., NAS disabled)
	Scalability
	Dynamic DNN training (i.e., NAS enabled)
	Effectiveness of vPipe's algorithms
	Discussions

	Related work
	Conclusion
	References
	Biographies
	Shixiong Zhao
	Fanxin Li
	Jianyu Jiang
	Yuhao Qing
	Dong Huang
	Xusheng Chen
	Sen Wang
	Peng Wang
	Gong Zhang
	Cheng Li
	Ping Luo
	Heming Cui

